DRAFT

Generic Lookup and Update
for Infinitary Inductive-Recursive Types

Larry Diehl

Portland State University, USA
Idiehl@cs.pdx.edu

Abstract

The class of Infinitary inductive-recursive (InfIR) types is com-
monly used to model type theory within itself. While it is com-
mon and convenient to provide examples of values within an InfIR
model, writing functions that manipulate InfIR types is an under-
explored area due to their inherent complexity.

Our goal in this work is to push the boundaries of programming
with InfIR types by introducing two functions operating over them.
The first is a lookup function to extract sub-components from an
InfIR type, and the second is an update function to replace sub-
components within an InfIR type. We start by considering how
to write such functions for concrete examples of InfIR types, and
then show how to write generic versions of the functions for any
datatype definable in the universe of InfIR types. We actually write
two versions of the generic functions, one where the universe is
open and another where the universe is closed.

Categories and Subject Descriptors D.3 [Software]. Program-
ming Languages.

Keywords Dependent types; induction-recursion; generic pro-

gramming.

1. Introduction

Infinitary inductive-recursive (InfIR) types are commonly used in

dependently typed programs to model type-theoretic universes (Martin-

Lof 1984). For example, consider the Agda (Norell 2007) model
below of the universe of natural numbers and dependent functions.'

mutual
data Type : Set where
‘Nat : Type
‘Fun: (A: Type) (B:[A] — Type) — Type

[]:Type — Set
['Nat] =N

! This paper is written as a literate Adga program. The literate Agda
source file and other accompanying code can be found at
https://github.com/larrytheliquid/infir

[Copyright notice will appear here once *preprint’ option is removed.]

Tim Sheard

Portland State University, USA
sheard@cs.pdx.edu

['‘FunAB]=(a:[A]) = [Ba]

This Type is infinitary because the ‘Fun constructor’s second in-
ductive argument (B) is a function (hence Types can branch in-
finitely). Additionally, it is inductive-recursive because it is mutu-
ally defined with a function ([_[) operating over it.

Once you have defined a model, it is also common to pro-
vide a few examples of values that inhabit it. For example, below
(NumFun) is a function Type that takes a natural number 7 as in-
put, then asks you to construct a natural number from 7 additional
natural number arguments.

NumArgs : N — Type
NumArgs zero = ‘Nat
NumArgs (suc n) = ‘Fun ‘Nat (const (NumArgs n))

NumFun : Type
NumFun = ‘Fun ‘Nat NumArgs

While defining models and example values using infinitary
inductive-recursive types is common, writing inductively defined
functions over them is less so.

Why are there so few examples of functions over infinitary
inductive-recursive types? Because they contain inherently com-
plex properties. Their infinitary nature makes them higher-order
datatypes, rather than simpler first-order datatypes. Their inductive-
recursive nature means you need to deal with dependencies be-
tween arguments and mutual functions too.

Functional programming languages typically package use-
ful datatypes (like Lists and Vectors) with useful operations
(like lookup and update) in their standard libraries. Additionally,
generic implementations of such operations may exist as libraries
for any other user-defined datatypes.

Our primary contribution is to show how to write two partic-
ular operations over infinitary inductive-recursive types (such as
Type universes), and then generalize those operations from func-
tions over concrete datatypes to generic functions over any user-
defined datatype. The first operation is lookup, allowing data within
an InfIR type to be extracted. The second operation is update, al-
lowing a value within an InfIR type to be replaced by another value.
We also contribute a Path type used by lookup and update to point
at a particular position within a datatype. More specifically, we con-
tribute Path, lookup, and update for:

e A concrete large InfIR type, Type, in Section 3.
¢ A concrete small InfIR type, Arith, in Section 4.
e A generic universe for an open theory of types, in Section 5.

e A generic universe for a closed theory of types, in Section 6.

2016/8/5

Finally, we hope that seeing examples of writing both concrete
and generic functions using infinitary inductive-recursive types will
help future dependently typed functional programmers with writing
their own functions over this class of datatypes.

2. The problem

Before describing why writing functions over InfIR types is dif-
ficult, we first consider writing analogous functions over simpler
datatypes. Thereafter we point out what becomes difficult in the In-
fIR scenario, and describe a general methodology for writing total
functions in a dependently typed language, which can be applied to
successfully write InfIR functions.

For readers of the colored version of this paper, we use the
following Agda source code highlighting color conventions: Key-
words are orange, datatypes are dark blue, constructors are green,
functions are light blue, and variables are purple.

2.1 Background

Let us first consider writing lookup for a simple binary Tree.

data Tree : Set where
leaf : Tree
branch : (A B : Tree) — Tree

Our Tree stores no additional data in nodes, can have binary
branches, and ends with a leaf. It is easy to work with because it
is first-order, has no dependencies between arguments, and has no
mutually defined functions.

If we want to lookup a particular subTree, we must first have a
way to describe a Path that indexes into our original tree.

data Path : Tree — Set where

here : V{A} — Path A
there; : V{A B}

— Path A

— Path (branch A B)
theres : V{A B}

— Path B

— Path (branch A B)

The here constructor indicates that we have arrived at the sub-
tree we would like to visit. The there; constructor tells us to take
a left turn at a branch, while there, tells us to take a right turn. In
general, we adopt the convention that a numerical subscript after a
there constructor of a Path indicates which argument to point to
(we use one-based indexing rather than zero-based indexing).

Once we have defined Paths into a Tree, it is straightforward to
define lookup by following the Path until we arrive at the subtree
indicated by the here constructor of Path.

lookup : (A : Tree) — Path A — Tree
lookup A here = A

lookup (branch A B) (there; i) = lookup A i
lookup (branch A B) (theres i) = lookup B i

2.2 lookup with a computational return type

Now let’s consider writing a total lookup function for polymorphic
Lists (instead of the binary Trees above), where the return type of
lookup is dynamically computed. Below is the List and its Path.

data List (A : Set) : Set where
nil : List A
cons: A — List A — List A

data Path {A : Set} : List A — Set where
here : V{xs} — Path xs
there; : V{x xs} — Path (cons x xs)
theres : V{x xs}
— Path xs
— Path (cons x xs)

The here and theres constructors are analogous to those for
Tree Paths. However, there; points to a non-inductive A value, the
first argument to cons, whereas this pointed to an inductive subtree
in the Tree scenario.

In the (traditionally) non-dependent Haskell (Jones 2003) lan-
guage there are two distinct lookup-like functions for lists.

drop :: Int -> [a] -> [al
(1) :: [a] -> Int -> a

The first (drop) looks up inductive sublists, and the second
(1) looks up non-inductive a values. A dependently typed lan-
guage like Agda allows us to a write a single function that may
return a List or an A, depending on what the input Path points to.
Note that below {A = A} is Agda notation for binding an implicit
argument explicitly.

Lookup : {A : Set} (xs: List A) — Path xs — Set
Lookup {A = A} xs here = List A

Lookup {A = A} (cons x xs) there; = A

Lookup (cons x xs) (therez i) = Lookup xs i

lookup : {A : Set} (xs: List A) (i : Path xs) — Lookup xs i
lookup xs here = xs

lookup (cons x xs) there; = x

lookup (cons x xs) (therez i) = lookup xs i

The Lookup function computes the return type of lookup, al-
lowing lookup to return either a List or an A (the base cases of
Lookup). We will refer to functions like Lookup as computational
return types.

In the colored version of this paper, you can spot a compu-
tational type because it is a light blue Function, whereas a non-
computational Datatype is dark blue. Both computational and non-
computational types are capitalized by convention.

2.3 head with a computational argument or return type

Once we move from finitary non-dependent types like Tree and
List to an InfIR type like Type, it is no longer obvious how to
write a function like lookup. Looking up something in the left side
(domain) of a ‘Fun is easy, but looking up something in the right
side (codomain) requires entering a function space.

Figuring out how to write functions like lookup (and more com-
plicated functions) over InfIR types is the subject of this paper. The
solution (given in the next section) involves a more complicated
version of the computational return type Lookup above. But, let
us first consider a general methodology for turning a function that
would otherwise be partial into a total function. For example, say
we wanted to write a total version of the typically partial head func-
tion.

head : {A: Set} — ListA — A

We have 2 options to make this function total. We can either:

1. Change the domain, for example by requiring an extra default
argument.

2016/8/5

head; : {A : Set} — ListA - A — A
head; nily =1y
head; (cons x xs) y = x

2. Change the codomain, for example by returning a Maybe result.

head, : {A : Set} — List A — Maybe A
heads nil = nothing
heady (cons x xs) = just x

Both options give us something to do when we apply head
to an empty list: either get an extra argument to return, or we
simply return nothing. However, these options are rather extreme
as they require changing our intended type signature of head for
all possible lists. The precision of dependent types allows us to
instead conditionally ask for an extra argument, or return nothing
of computational value, only if the input list is empty!

First, let’s use dependent types to conditionally change the do-
main. We ask for an extra argument of type A if the List is empty.
Otherwise, we ask for an extra argument of type unit ('T), which is
isomorphic to not asking for anything extra at all. Below, HeadArg
is type of the extra argument, which is dependent on the input xs of
type List. We call functions like Head Arg computational argument

types.

HeadArg : {A : Set} — List A — Set
HeadArg {A =A} nil=A
HeadArg (cons x xs) = T

heads : {A : Set} (xs: List A) — HeadArg xs — A
heads nily =y
heads (cons x xs) tt = x

Second, let’s use dependent types to conditionally change the
codomain. HeadRet computes our new return type, conditionally
dependent on the input list (it is a computational return type). If the
input list is empty, our head, function returns a value of type unit
(T). If it is non-empty, it returns an A. Note that returning a value
of T is returning nothing of computational significance. Hence, it
is as if head, is not defined for empty lists.

HeadRet : {A : Set} — List A — Set
HeadRet nil =T
HeadRet {A = A} (cons x xs) = A

heady : {A : Set} (xs: List A) — HeadRet xs
heady nil = tt
heads (cons x xs) = x

We have seen how to take a partial function and make it to-
tal, both with and without the extra precision afforded to us by de-
pendent types (via computational argument and return types). We
would like to emphasize that the extra argument HeadArg in heads
is not merely a precondition, but rather extra computational con-
tent that must be supplied by the program to complete the cases
that would normally make it a partial function. To see the differ-
ence, consider a total version of a function that looks up elements
of a List, once given a natural number (N) index.

elem : {A : Set} (xs: List A) (n:N) — n < length xs — A

Because the natural number # may index outside the bounds of
the list xs, we need an extra argument serving as a precondition.
If this precondition (established using < above) is satisfied, it
computes to the unit type (T), but if it fails it computes to the
empty type (L). So, in the failure case the precondition (L) is
unsatisfiable, whereas the failure case of HeadArg is the extra
argument A needed to complete the otherwise partial function.

The rest of this paper expands on the ideas of this section by
defining functions like HeadArg that non-trivially compute extra
arguments. These dependent extra arguments are the key to writing
functions over InfIR datatypes.

3. Large InfIR Type

Section 2 reviews how to lookup subTrees, subLists, and subele-
ments pointed to by Paths. In this section we define the correspond-
ing datatypes and functions for InfIR Types.

3.1 Type

The InfIR Type used in this section is another type universe, similar
to the one in Section 1. The Type universe is still closed under
functions, but now the ‘Base types are parameters (of type Set)
instead of being hardcoded to N.

mutual
data Type : Set; where
‘Base : Set — Type
‘Fun: (A: Type) (B:[A] — Type) — Type

[]:Type — Set
['‘BaseA]=A
['FunAB]=(a:[A])—=[Ba]

3.2 Path

Let’s reconsider what it means to be a Path. You can still point
to a recursive Type using here. Now you can also point to a non-
recursive A of type Set using thereBase.

When traversing a Tree, you can always go left or right at a
branch. When traversing a Type, you can immediately go to the left
of a ‘Fun, but going right requires first knowing which element « of
the type family B a to continue traversing under. This requirement
is neatly captured as a dependent function type of the f argument
below.

data Path : Type — Sety where
here : V{A} — Path A
thereBase : V{A} — Path (‘Base A)
thereFun; : V{A B}
(i : Path A)
— Path (‘Fun A B)
thereFun, : V{A B}
(f:(a:[A])— Path (Ba))
— Path (‘Fun A B)

Above, thereFun, represents going right into the codomain of
‘Fun, but only once the user tells you which « to use. In a sense,
going right is like asking for a continuation that tells you where to
go next, once you have been given a. Also note that because the
argument / of thereFuns is a function that returns a Path, the Path
datatype is infinitary (just like the Type it indexes).

3.3 Lookup & lookup

We were able to write a total function to lookup any subTree, but
looking up a subType is not always possible. It is not possible

2016/8/5

because looking up a value in the codomain of a ‘Fun requires extra
information, namely the branch of the codomain containing our
desired subType. Using the methodology from Section 2.3, we can
make lookup for Types total by choosing to change the codomain,
depending on the input Type and Path. Lookup (a computational
return type) computes the codomain of lookup, asking for a Type
or Set in the base cases, or a continuation when looking to the right
of a ‘Fun.

Lookup : (A : Type) — Path A — Set;

Lookup A here = Type

Lookup (‘Base A) thereBase = Set

Lookup (‘Fun A B) (thereFun; i) = Lookup A i

Lookup (‘Fun A B) (thereFuns f) =
(a:[A])— Lookup (Ba) (fa)

Finally, we can write lookup in terms of Path and Lookup.
Notice that users applying our lookup function need to supply extra
a arguments exactly when they go to the right of a ‘Fun. Thus, our
definition can expect an extra argument « in the thereFun case.

lookup : (A : Type) (i : Path A) — Lookup A i
lookup A here = A
lookup (‘Base A) thereBase = A
lookup (‘Fun A B) (thereFun; i) = lookup A i
lookup (‘Fun A B) (thereFuns f) =

X a — lookup (B a) (fa)

3.4 Update & update

Now we will write an update function for Types. After supplying
a Path and a substitute Type, update should return the original
Type but with the substitute replacing what the Path pointed to.
To make updating the InfIR Type more convenient (for the caller
of update), the type of the substitute will actually be Maybe Type,
where nothing causes an identity update. We might expect to write
a function like:

updateNaive :
(A : Type) (i : Path A) (X : Maybe Type) — Type

Above X is the intended Type to Maybe substitute at position i. In
order to write a total version of updateNaive, we need to change
the domain by asking for an ¢ whenever we update within the
codomain of a ‘Fun.

We call the type of the value to substitute Update (a computa-
tional argument type), which asks for a Maybe Type or a Maybe
Set in the base cases (here and thereBase respectively), and a con-
tinuation in the thereFun, case. However, updating an element to
the left of a ‘Fun is also problematic. We would like to keep the old
‘Fun codomain B unchanged, but it still expects an a of the original
type [A |. Therefore, the thereFun; case must ask for a forgetful
function f that maps newly updated «’s to their original type.

Update : (A : Type) — Path A — Set;
update : (A : Type) (i : Path A) (X : Update A i) — Type

Update A here = Maybe Type
Update (‘Base A) thereBase = Maybe Set
Update (‘Fun A B) (thereFun; i) =
Y (UpdateAi) A X — [updateAi X —[A])
Update (‘Fun A B) (thereFuns f) =
(a:[A]) — Update (Ba) (fa)

update A here X = maybe id A X
update (‘Base A) thereBase X = ‘Base (maybe id A X)
update (‘Fun A B) (thereFun, i) (X, /) =
‘Fun (update Ai X) \a — B (fa))
update (‘Fun A B) (thereFuny f) h =
‘Fun A (\ @ — update (B a) (fa) (h a))

Notice that we must define Update and update mutually, be-
cause the forgetful function f (the codomain of ¥ in the thereFun;
case of Update) must refer to update in its domain. Although the
thereFun; case of update only updates the domain of ‘Fun, the
type family B in the codomain expects an a of type [A |, so we use
the forgetful function f to map back to a’s original type.

The base cases (here and thereBase) of update perform up-
dates using the substitute X (where nothing results in an identity
update). The thereFuns case of update leaves the domain of ‘Fun
unchanged, and recursively updates the codomain using the substi-
tute continuation /.

Note that we could have defined Update as an inductive type,
rather than a computational type. If we had done so, then it would
be an InfIR type with update as its mutually defined function!

3.5 Universal versus Existential Path

When you first encounter the Path datatype of Section 3.2, its
thereFuns constructor may seem confusing and unnecessarily
complex. Its thereFuns constructor takes an infinitary argument,
allowing you to index all branches of the codomain of a ‘Fun
(hence we might call the Section 3.2 definition a universal Path).
The Section 3.2 Path is actually single path when indexing a nor-
mal argument, but a multipath when indexing an infinitary argu-
ment.

You might wonder if we can get away with an arguably simpler
existential version of Path, where the thereFuns constructor has
the following type.

thereFuns : V{A B}
(a:[A])
(i : Path (B a))
— Path (‘Fun A B)

Above, thereFun, takes a single a¢ used to indicate which
branch of B to index (compare this to the function indexing all
branches of B in Section 3.2).

Now the thereFun case of Lookup merely recurses rather than
returning a II type.

Lookup (‘Fun A B) (thereFuns a i) = Lookup (B a) i

Similarly, the thereFuns case of lookup merely recurses rather
than returning a function.

lookup (‘Fun A B) (thereFuns a i) = lookup (B a) i

Unfortunately, while existential Path lookup works reasonably
well, existential Path update has a severe limitation. Imagine up-
dating the codomain of a ‘Fun whose domain is the type of natural
numbers. Using an existential Path, we could start by updating the
zero branch, then the one branch, then the two branch, etc. How-
ever, we would never be able to finish updating our ‘Fun for all
natural number branches.

We do not define existential Path update below because of the
aforementioned limitation, but even defining the limited version
would be painful. In order to update a single branch but also use
the old values for all other branches, we need to require decidable
equality for the domain of branches. This decidable equality re-

2016/8/5

quirement would disallow updates of ‘Fun values whose domain
contains another ‘Fun, yet another limitation of existential Path
update! It should now be apparent why we used a universal Path
in Section 3.2 and the remaining parts of this paper.

4. Small InfIR Arith

Section 3 shows how to define lookup and update for the large
InfIR Type. Type is called large because the codomain of its IR
function | | has type Set. In this section we adapt our work to
a small InfIR type called Arith (it is called small because the
codomain of its IR function is nor Set), which is structurally similar
to Type. We borrow the Arith type from Hancock et al. (2013).

4.1 Arith

The InfIR Arith used in this section is structurally similar to Type
from Section 1. One difference is that the base constructor (‘Num),
contains a Natural number (rather than a Set, like ‘Base). The other
difference is that the mutually defined function eval returns a N
(rather than a Set, like [].)

mutual
data Arith : Set where
‘Num : N — Arith
‘Prod : (a : Arith) (f: Fin (eval a) — Arith) — Arith

eval : Arith - N
eval (‘Numn) =n
eval (‘Prod af) = prod (eval a) (A a — eval (fa))

Values of type Arith encode “Big Pi” mathematical arithmetic
product equations up to some finite bound, such as the one below.

six : Arith
six = ‘Prod (‘Num 3) (\ i = ‘Num (num 7))

An Arith equation may be nested in its upper bound or body, but
the lower bound is always the value 1. Note that above we define
six with the helper function num, which converts the finite set value
i to a natural number using one-based indexing.

The eval function interprets the equation as a natural number,
using the helper function prod to multiply a finite number 7 of other
natural numbers together.

prod: (n:N) (f: Finn - N) - N
prod zero f = suc zero
prod (suc n) f = fzero * prod n (f o suc)

4.2 PathN & lookupN & updateN

The major difference between the base case ‘Num of Arith, and
‘Base of Type, is that the former contains a N while the latter
contains a Set. The lookup for Type had no choice but to return
the value of type Set in the ‘Base case. We cannot look further into
the value of type Set because Agda does not support type case. In
contrast, we can continue to lookup into a substructure of N in the
base case ‘Num of lookup for Arith. For this reason, we need the
PathN, lookupN, and updateN definitions for natural numbers.
PathN is an index into the number, which can point to that
number or any smaller number. It is different from the standard
finite set type Fin because the number pointed to may be zero.

data PathN : N — Set where
here : {n: N} — PathNn
there : {n: N}
(i : PathN n)
— PathN (suc n)

The lookup function simply returns the N pointed to by PathN.
It has a non-computational return type because a PathN always
points to a N.

lookupN : (n: N) — PathNn — N
lookupN 1 here = n
lookupN (suc n) (there i) = lookupN n i

The update function replaces a sub-number within a N with a
Maybe N. The nothing case performs an identity update, while just
n replaces the sub-number with 7.

updateN : (n: N) — PathN 7 — Maybe N — N
updateN n here x = maybe id n x
updateN (suc n) (there i) x = suc (updateN n i x)

4.3 Path & L/lookup & U/update

The Path, lookup, and update definitions for Arith are almost tex-
tually identical to the corresponding definitions for Type from Sec-
tion 3. Thus, we will only cover the ‘Num cases of these definitions.
The old Type definitions will work for the other cases by textually
substituting Arith for Type, ‘Prod for ‘Fun, and by defining the
following type synonym.

[1 :Arith — Set

[A] =Fin (eval A)

The thereNum case of Path can point somewhere deeper into a
substructure of the natural number contained by ‘Num by using a
PathN.

data Path : Arith — Set where
thereNum : {n : N} — PathN n — Path (‘Num n)

The ‘Num case of Lookup results in a natural number.
Lookup (‘Num n) (thereNum i) = N

The ‘Num case of lookup continues to lookupN the number
contained inside.

lookup (‘Num n) (thereNum i) = lookupN n i

The ‘Num case of Update allows the user to supply a Maybe N,
representing either the identity update or a number to update with.

Update (‘Num 1) (thereNum i) = Maybe N

The ‘Num case of update leaves ‘Num unchanged, but replaces
the natural number contained using updateN.

update (‘Num n) (thereNum i) X = ‘Num (updateN 7 i X)

2016/8/5

5. Generic Open InfIR

In this section we develop generic versions of the datatypes and
functions from previous sections, for any datatype encoded as an
inductive-recursive Dybjer-Setzer code (Dybjer and Setzer 1999;
Dybjer 2000).

5.1 Desc

First let us recall the type of inductive-recursive codes developed
by Dybjer and Setzer. We refer to values of Desc defined below
as “codes”.? A Desc simultaneously encodes the definition of a

datatype and a function mutually defined over it.

data Desc (O : Set) : Set; where
End: (0: O) — Desc O
Arg: (A :Set) (D: (a:A) — Desc O) — Desc O
Rec: (A :Set) (D:(0:A — O) — Desc O) — Desc O

To a first approximation, a datatype Description encodes the
type signature of a single constructor, and the value returned by
the case of that constructor for the mutually defined function. End
is used to specify that a constructor takes no further arguments.
However, the user must supply a value o of type O to define the
value returned by the mutually defined function. Arg is used to
specify a non-recursive argument of a constructor, a of type A, and
the remainder of the Desc may depend on the value a. Rec is used to
specify a recursive argument (of the type currently being specified).
More generally, the recursive argument may be a function type
(encoding an infinitary argument) whose codomain is the type
currently being defined but whose domain may be non-recursive.?
Above, the domain of the function is some non-recursive type A,
and the remainder of the Desc may depend on a function o from
A to O, representing the result of applying the mutually defined
function to the recursive argument being specified.

Note that we can encode a “first-order” recursive argument by
applying Rec to the unit type T. This will actually encode a higher-
order recursive argument, but the domain will be trivially inhabited.
Similarly, we can encode a “non-inductive-recursive” datatype (one
without a mutual function, like N) by making the output argument
O of Desc be the unit type. In fact, we will still encode a mutual
function, but it will trivially always return unit.

Finally, to encode multiple constructors as a Desc, you simply
define an Arg whose domain is a finite enumeration of types (repre-
senting each constructor, like ArithT below), and whose codomain
is the Desc corresponding to the arguments and recursive cases for
each constructor.

The abstract nature of Desc makes it somewhat difficult to
understand at first, especially the Rec constructor. Let’s try to
understand Desc better with an example, encoding Arith from
Section 4 below.

data ArithT : Set where
NumT ProdT : ArithT

ArithD : Desc N
ArithD = Arg ArithT \
{NumT — Arg N (A n — End n)
: ProdT
—Rec TAn

2 We have renamed the original Dybjer-Setzer constructions to emphasize
their meaning in English. The original names of our Desc/End/Arg/Rec
constructions are IR/./o/§ respectively.

3The domain is restricted to be non-recursive to enforce that encoded
datatypes are strictly positive.

— Rec (Fin (ntt)) N f
— End (prod (n tt) f)

The Desc begins with an Arg, taking sub-Descs for each ele-
ment of the finite enumeration ArithT, representing the types of
each Arith constructor.

The second argument to Arg is an anonymous function that
makes use of Agda’s pattern matching lambda syntax, where cases
appear between braces and each case is separated by a semicolon.
In this syntax the constructor being matched and the definition are
separated by an Agda arrow (rather than an equal sign). Addition-
ally, we note that the scope of Agda lambdas extends all the way
to the right, allowing us to omit many parentheses for lambdas ap-
pearing after uses of Arg and Rec.

The NumT description uses Arg to take a natural number (N),
then Ends with that number. Ending with that number encodes that
the ‘Num case of the eval from Section 4 returns the number held
by ‘Num in the base case.

The ProdT description uses Rec twice, taking two recursive
arguments. The first recursive argument is intended to encode an
Arith rather than a function type, so we make its domain a value
of the trivial type T. The second recursive argument is intended to
encode a function from Fin 7 to Arith, so we ask for a Fin (n tt),
where 1 represents the value returned by applying eval to the first
recursive argument. In fact, n represents a function from the trivial
type T to N, because first-order recursive arguments are encoded as
higher-order arguments with a trivial domain. Finally, End is used
to specify that there are no further arguments, and the ‘Prod case
of eval should result in the product represented by the first two
recursive arguments.

5.2 Data

In the previous subsection we used Desc to encode a datatype
(Arith) and its mutual function (eval). In this section we define how
to extract these two constructions from the description. Applying
the Data type former to a description results in the datatype it
encodes, and applying the fun function to a description results in
the mutual function it encodes.

Data is defined in terms of a single constructor con, which holds
a dependent product (nested dependent pairs) of all arguments of
a particular constructor. The computational argument type Data’
computes the type of this product, dependent on the Description
that Data is parameterized by.

For the remainder of the paper we employ a convention for func-
tions ending with a prime, like Data’. They will be defined by in-
duction over a description, but must also use the original descrip-
tion they are inducting over in the Rec case. Hence, they take two
Desc arguments, where the first R is the original description (to be
used in Recursive cases), and the second D is the one we induct
over.

data Data {O : Set} (D : Desc O) : Set where
con: Data’ D D — Data D

Data’: {O: Set} (R D : Desc O) — Set
Data’ R (Endo) =T
Data’ R (ArgAD) =Y A (\ a — Data’ R (D a))
Data’ R (RecA D) =
Y (A — Data R) (\f— Data’ R (D (fun R o f)))

The End case means no further arguments are needed, so we
ask for a trivial value of type T. The Arg case asks for a value of
type A, which the rest of the arguments may depend on using a. The
Rec case asks for a function from A to a recursive value Data R,

2016/8/5

and the rest of the arguments may use / to depend on the result of
applying the mutual function (e.g. eval) to the recursive argument
after applying a value of type A.

Next we define fun (encoding the mutual function) in terms of
fun’.

fun: {0 : Set} (D : Desc O) — Data D — O
fun D (con xs) = fun’ D D xs

fun’: {0 : Set} (R D : Desc O) — Data’ RD — O

fun' R (Endo) tt =0

fun’ R (Arg AD) (a, xs) = fun’ R (D a) xs

fun’ R (Rec A D) (f, xs) =fun’ R (D (\a — fun R (fa))) xs

The End case gives us what we want, the value o that the mutual
function should return for the encoded constructor case. The Arg
and Rec cases recurse, looking for an End.

5.3 A schema for generic functions

In this section the schema used for writing a generic function is to
write a pair of generic functions.

generic : {O : Set} (D : Desc O) — Data D — ETC
generic’ : {O : Set} (R D : Desc O) — Data’ RD — ETC

The first function always has a type prefix like generic, being
defined by induction on the constructor of a Datatype (the rest of
the arguments and return type go in the ET C position).

The second function always has a type prefix like generic’, be-
ing defined by induction on the arguments of a constructor (Data’).

You have already seen one such pair in the definition of Data,
namely fun and fun’. Furthermore, generic programs often follow
a similar recursion pattern as the one described above for fun and
fun’. For example, it is common for generic’ to call generic with R
in the Rec case.

5.4 Path

Now we will encode a generic Path type, that can be used to index
into any inductive-recursive value encoded by applying Data to a
Desc.

data Path {O : Set} (D : Desc O) : Data D — Set; where
here : V{x} — Path D x
there : V{xs}
— Path’ D D xs
— Path D (con xs)

A Path uses here to immediately point to the current construc-
tor. It uses there to point into one of the arguments of the current
constructor, using Path’ as a sub-index.

5.5 Path’

A Path’ points to an argument of a constructor, one of the values
of the dependent product computed by Data’.

data Path’ {O : Set} (R : Desc 0)
: (D : Desc O) — Data’ R D — Set; where
thereArgy : V{A D a xs}
— Path’ R (Arg A D) (a, xs)
thereArgs : V{A D a xs}
(i : Path’ R (D a) xs)
— Path’ R (Arg A D) (a, xs)
thereRec; : V{A D fxs}
(g:(a:A)— Path R (fa))

— Path’ R (Rec A D) (f, xs)
thereRecy : V{A D fxs}

(i : Path’ R (D (fun R o f)) xs)

— Path’ R (Rec A D) (f, xs)

The thereArg, case points immediately to a non-recursive value
of type A. Recall thereBase from Section 3, which points immedi-
ately to a non-recursive value of type Set. The thereBase case can-
not index further into non-recursive Sets because values of type Set
cannot be case-analyzed. Similarly, the thereArg; case of our open
universe generic Path’ cannot index further into A, because the type
of A is Set and cannot be case-analyzed. For this reason, Path’ does
not adequately capture concrete paths for types like Arith of Sec-
tion 4, which has a N in the ‘Num case that we would like to index
into. This is a limitation due to using open universe Descriptions,
which we remedy using a closed universe in Section 6.

The thereArgs case points to a sub-argument, skipping past the
non-recursive argument.

The thereRec; case points to a recursive argument. Because the
recursive argument is a function whose domain is a value of type
A, the sub-Path’ must also be a function taking an A, hence Path’
is an infinitary type. Thus, thereRec; is much like thereFuny of
Section 3.

The thereRec, case points to a sub-argument, skipping past the
recursive argument.

5.6 Lookup & lookup

As in Section 3 and Section 4, our generic open universe lookup
must have a computational return type, Lookup. Below, the Lookup
and Lookup’ functions are mutually defined, and so are lookup and
lookup’.

Lookup : {O : Set} (D : Desc O) (x: Data D) — Path D x — Set

Lookup D x here = Data D
Lookup D (con xs) (there i) = Lookup’ D D xs i

The here case returns a Data of the encoded description D
currently being pointed to. The there case returns a type Lookup’
of one of the arguments to the constructor.

lookup : {O : Set} (D : Desc O) (x : Data D) (i : Path D x)
— Lookup D x i

lookup D x here = x

lookup D (con xs) (there i) = lookup’ D D xs i

The here case returns the value being pointed to. The there
case returns a value within one of the arguments of the current
constructor via lookup’.

5.7 Lookup’ & lookup’

The function lookup’ is used to lookup a value within an argument
of a constructor, and has Lookup’ as its computational return type.

Lookup” : {O : Set} (R D : Desc O) (xs : Data’ R D)
— Path’ R D xs — Set

Lookup’ R (Arg A D) (a , xs) thereArg; = A

Lookup’ R (Arg A D) (a, xs) (thereArgs i) =
Lookup’ R (D a) xs i

Lookup’ R (Rec A D) (f, xs) (thereRec; g) =
(a:A) — Lookup R (fa) (g a)

Lookup’ R (Rec A D) (f, xs) (thereRecs i) =
Lookup’ R (D (fun R o f)) xs i

2016/8/5

The thereArgs and thereRecs cases skip past one argument,
looking for the type of a subsequent argument pointed to by the
index. The thereArg; case returns the type of the current non-
recursive argument A. The thereRec; asks for a continuation, rep-
resented as a function type from A to the rest of the Lookup.
Because thereRec; points to a recursive argument, it asks for a
Lookup of the original description R, rather than a Lookup’ of some
subsequent argument description.

lookup’ : {O : Set} (R D : Desc O) (xs : Data’ R D)
(i : Path’ R D xs) — Lookup’ R D xs i

lookup’ R (Arg A D) (a , xs) thereArgs = a

lookup” R (Arg A D) (a , xs) (thereArgs i) =
lookup’ R (D @) xs i

lookup” R (Rec A D) (f, xs) (thereRec; g) =
X a — lookup R (fa) (g a)

lookup” R (Rec A D) (f, xs) (thereRecs i) =
lookup” R (D (fun R o f)) xs i

The thereArgs and thereRecy cases skip past one argument,
and return a lookup into a subsequent argument. The thereArg;
case returns the non-recursive argument a of type A currently being
pointed to. The thereRec; returns a continuation from « of type A
to the rest of the lookup. Note that the body of the continuation
is a lookup rather than a lookup’, matching the type specified by
Lookup’ for the thereRec; case.

5.8 Update & update

Now we define the generic open universe update function, updat-
ing a value in the open universe with the contents of the computa-
tional argument type Update. Note that Update, Update’, update,
and update’ all need to be mutually defined. The mutual depen-
dence has to with the need for a forgetful function, which also re-
quires Update and update to be mutually defined in Section 3.

Update : {O : Set} (D : Desc O) (x : Data D)
— Path D x — Set

Update D x here = Maybe (Data D)

Update D (con xs) (there i) = Update’ D D xs i

The here case returns a Maybe Data of the encoded description
D currently being pointed to. The there case returns a type Update’
of one of the arguments to the constructor.

update : {O : Set} (D : Desc O) (x : Data D)
(i : Path D x) (X : Update D x i) — Data D
update D x here X = maybe id x X
update D (con xs) (there i) X = con (update’ D D xs i X)

The here case keeps the old value, performing an identity update
if X is nothing. Otherwise, if X is just of some value, it updates by
returning that value. The there case updates one of the arguments
within the constructor con via update’.

5.9 Update’ & update’

The function update’ is updates an argument of a constructor, with
the computational argument type Update’.

Update’ : {O : Set} (R D : Desc O) (xs: Data’ R D)
— Path’ R D xs — Set
Update’ R (Arg A D) (a, xs) thereArg; =
Y (Maybe A)
(maybe (\a’ — Data’ R (D a) — Data’ R(Da’)) T)
Update’ R (Arg A D) (a, xs) (thereArgs i) =

Update’ R (D a) xs i
Update’ R (Rec A D) (f, xs) (thereRec; g) =
Y ((a:A) — Update R (fa) (g a))
(Nh—letf’=Xa— updateR (fa) (ga) (ha)
in Data’ R (D (fun R of))
— Data’ R (D (fun R o f)))
Update’ R (Rec A D) (f, xs) (thereRecs i) =
Update’ R (D (funRof)) xs i

The thereArgs and thereRecy cases skip past one argument,
updating the type of a subsequent an argument pointed to by the
index.

The thereArg; case asks for a Maybe A to update the left
argument with. When we define update’ for this case, updating
with a just ¢’ will require translation of second component of the
pair xs to be indexed by the new first component D a’ rather than
the old first component D a. Therefore, we also need to ask for a
function that translates D a to D a’.

The thereRec; case asks for a continuation to update the first
component of the recursive argument, but also needs a translation
function to update the index in the codomain of the second com-
ponent. The translation functions of thereArg; and thereRec; are
analogous to the forgetful function of Update in Section 3 for the
thereFun; case, only differing in variance (translating versus for-
getting) due to the way dependencies are captured as dependent
products in Desc codes.

update’ : {O: Set} (R D : Desc O) (xs : Data’ R D)
(i : Path’ R D xs) — Update’ RD xsi — Data’ R D

update’ R (Arg A D) (a , xs) thereArg; (nothing , f) =
a,xs

update’ R (Arg A D) (a , xs) thereArgy (just X, f) =
X, fxs

update’ R (Arg A D) (a, xs) (thereArgs i) X =
a,update’ R (D a)xsiX

update’ R (Rec A D) (f, xs) (thereRec:1 g) (h, F) =
(N a — update R (fa) (ga) (ha)), Fxs

update’ R (Rec A D) (f, xs) (thereRecs i) X =
f,update’ R (D (funRof)) xsi X

The thereArg, and thereRecs keep the left argument un-
changed, and update a subsequent argument pointed to by the in-
dex. The thereArg; case performs the identity update in the noth-
ing case. In the just case, the left component is updated while
the right component is translated. The thereRec; case is similar,
updating the left component and translating the second.

6. Generic Closed InfIR

Section 5 covers how to define generic constructions like Path over
an open universe of types. The open universe does not adequately
model the Path over the concrete Arith type of Section 4, as it
does not let you index into non-recursive arguments in a datatype
such as the N argument to ‘Num. This is because the Arg and Rec
constructors take a Set argument, which we cannot perform case
analysis on in Agda.

In this section we introduce a novel closed universe of small
InfIR types, allowing us to adequately express generic construc-
tions over datatypes like Arith. Defining Desc reflected datatype
definitions as codes, allowing us to write limited forms of generic
functions. The limitation is due to the Set arguments of Desc con-
structors, which are themselves not codes. Below we overcome
this by mutually defining a type of codes for Sets and codes for
Descriptions. The constructor arguments of these new codes only

2016/8/5

have other codes as arguments (they do not contain Set arguments),
so case analysis (hence generic programming) is always possible.

6.1 ‘Set & ‘Desc

We begin by defining a universe of codes ‘Set for primitive types
of our universe, along with a meaning function | | mapping each
code for a type to a concrete primitive Set.

data ‘Set : Set where
‘Empty ‘Unit ‘Bool : ‘Set
‘Fun:(A:'Set) (B:[A] — 'Set) — 'Set
‘Data : {O: ‘Set} (D : 'Desc O) — ‘Set

[]:'Set — Set
[[Emptyﬂ—

[Unit] =

[‘Boolﬂ_Bool
['FunAB]=(a:[A])—=[Ba]
['D ataDﬂ—Data«D»

Having codes for the empty type ‘Empty, the unit type ‘Unit,
booleans ‘Bool, and function ‘Fun is standard an similar to the
Type universe in the introduction. However, we add a code ‘Data
for inductive-recurse datatypes. The key to an adequate encoding is
to make the argument to ‘Data not a primitive Desc, but a new type
‘Desc of codes for descriptions. This type of codes for descriptions
also has a meaning function « _», mapping codes of descriptions
to a concrete primitive Desc.

data ‘Desc (O : ‘Set) : Set where
‘End: (0:[O])— 'Desc O
‘Arg: (A:'Set) (D:[A] — '‘Desc O) — ‘Desc O
‘Rec: (A:'Set) (D:(0:[A] —=[O])— ‘Desc0)
— ‘Desc O

~»:{0:'Set} — 'Desc O — Desc [O]
«'Endo» =Endo
«'ArgAD>» =Arg[A](Na— «Da»)
«'RecAD>»=Rec[A] Ao — « Do »)

The constructors of ‘Desc mirror those of Desc, but the ‘Arg
and ‘Rec constructors take a ‘Set code rather than concrete Set.
This is the key that allows us to define an adequate Path, because
we know how to case-analyze the type of codes ‘Set, so we can
have a path index into it. Finally, note that the two code types and
their meaning functions are all mutually defined.

Finally, let’s see a closed universe description encoding of Arith
from Section 4 below.

ArithD : ‘Desc 'N
ArithD = ‘Arg ‘Bool X
{ true — 'Arg 'N (A n — 'End n)
; false
— ‘Rec ‘Unit X\ n
— ‘Rec (‘Fin (ntt)) X\ f
— 'End (prod (n tt) f)

The main difference from the open universe encoding of Arith
from Section 5 is that ‘Arg takes the primitive ‘Bool of type ‘Set,
rather than ArithT of type Set. Because we are operating in a
closed universe, all arguments to ‘Arg and ‘Rec must themselves
be closed universe codes. For this reason, ArithD is also encoded

in terms ‘N and ‘Fin, which are ‘Set encodings of their Set coun-
terparts whose definitions have been omitted.

6.2 A schema for generic functions

In this section the schema used for writing a generic function is to
write a pair of generic functions like the following.

generic: (A:'Set) (a:[A]) = ETC
generic’ : {O: 'Set} (R D : ‘Desc O)
(xs:Data" « R» « D ») = ETC

The first function always has a type prefix like generic, being
defined by induction on values of our closed universe ‘Set.

The second function always has a type prefix like generic/,
being defined by induction on the arguments of a constructor
‘Described in our closed universe.

6.3 Path

The Path type for our generic closed universe is indexed by a type
code ‘Set and a value of the encoded type translated by the meaning
function []. In contrast, Path from Section 5 is indexed by a
concrete Description.

data Path : (A : 'Set) — [A | — Set where
here : V{A a} — Path A a
thereFun : V{A B f}
(g:(a:[A])— Path (Ba) (fa))
— Path (‘Fun A B) f
thereData : V{O} {D : ‘Desc O} {xs}
(i : Path” D D xs)
— Path (‘Data D) (con xs)

The here case points to the current value in our universe. The
thereFun case points to another value in a continuation. The
thereData case points to an argument of an inductive-recursive
constructor.

6.4 Path’

A Path’ points to an argument of a constructor, a value of Data’
applied to a description code translated by the meaning function
L .

data Path’ {O : ‘Set} (R : ‘Desc 0)

:(D: 'Desc O) — Data’ « R » « D » — Set where
thereArgy : V{A D a xs}

(i : Path A a)

— Path’ R (‘Arg A D) (a, xs)
thereArgs : V{A D a xs}

(i : Path’ R (D a) xs)

— Path’ R (‘Arg A D) (a, xs)
thereRec; : V{A D f xs}

(g:(a:[A])— Path (‘DataR) (fa))

— Path’ R (‘Rec A D) (f, xs)
thereRecs : V{A D fxs}

(i : Path’ R (D (fun « R » o f)) xs)

— Path’ R (‘Rec A D) (f, xs)

The thereArg; case is the only constructor that behaves differ-
ently than the open universe Path” of Section 5. Crucially, it points
to a non-recursive value by requiring a Path A ¢ as an argument. In
contrast, the open universe thereArg; does not take an argument,
thus it always points to a rather than some sub-value inside of it.
This is what allows our generic closed universe paths to adequately

2016/8/5

model a concrete path for a type like Arith, where ‘Num should be
able to index into its N!

6.5 Lookup & lookup

The lookup and Lookup functions are conceptually similar to their
open universe generic counterparts from Section 5. However, like
Path, they are parameterized by a value of ‘Set rather than an
inductive-recursive constructor of a Desc.

Lookup : (A :'Set) (a:[A]) — Path A a — Set
LookupA ahere=[A]
Lookup (‘Fun A B) f (thereFun g) =
(a:[A1]) — Lookup (B a) (/@) (¢ a)
Lookup (‘Data D) (con xs) (thereData i) =
Lookup’ D D xs i

As always, the here case points to the current value. The there-
Fun case points further within a continuation. The thereData case
points to a constructor argument via Lookup’.

lookup : (A:‘Set) (a:[A]) (i: PathAa) — LookupAai
lookup A a here = a
lookup (‘Fun A B) f (thereFun g) =
X a — lookup (B a) (fa) (g a)
lookup (‘Data D) (con xs) (thereData i) =
lookup” D D xs i

The lookup function returns the current value, a continuation,
or a lookup’ of a constructor argument respectively for the here,
thereFun, and thereData cases.

6.6 Lookup’ & lookup’

The lookup” and Lookup’ functions are even more similar to their
open universe generic counterparts from Section 5. They are pa-
rameterized by two ‘Description codes R and D, rather than primi-
tive Descriptions.

Lookup”: {O: ‘Set} (RD : ‘Desc O) (xs: Data’ « R » « D »)
— Path’ R D xs — Set
Lookup’ R (‘Arg A D) (a, xs) (thereArg; i) =
LookupAai
Lookup’ R (‘Arg A D) (a, xs) (thereArgs i) =
Lookup’ R (D a) xs i
Lookup’ R (‘Rec A D) (f, xs) (thereRec; g) =
(a:[A]) — Lookup (‘DataR) (fa) (g a)
Lookup’ R (‘Rec A D) (f, xs) (thereRecs i) =
Lookup’ R (D (fun « R » of)) xs i

The thereArgs, thereRecy, and thereRec, cases are like their
generic open universe counterparts. However, the thereArg; is
different as it recursively looks for a type within A rather than
immediately returning A.

lookup’ : {O: 'Set} (R D : ‘Desc O) (xs: Data’ « R » « D »)
(i : Path’ R D xs) — Lookup’ R D xs i
lookup” R (‘Arg A D) (a, xs) (thereArgy i) =
lookup A a i
lookup’ R (‘Arg A D) (a , xs) (thereArgs i) =
lookup’ R (D @) xs i
lookup” R (‘Rec A D) (f, xs) (thereRec; g) =
X a — lookup (‘Data R) (fa) (g a)
lookup” R (‘Rec A D) (f, xs) (thereRecs i) =

lookup” R (D (fun « R » of)) xs i

Once again, thereArg; is the major case that is different from
the open universe. Here, we continue looking within « rather than
immediately returning a.

6.7 Update & update

Now we define the generic closed universe update and Update.
Once again, Update, Update’, update, and update’ all need to be
mutually defined.

Update: (A : 'Set) (a: [A]) — Path A a — Set
Update A a here = Maybe [A |
Update (‘Fun A B) f (thereFun g) =
(a:[A]) — Update (Ba) (fa) (g a)
Update (‘Data D) (con xs) (thereData i) =
Update’ D D xs i

The here case returns a Maybe of the current value type A. The
thereFun case points further within a continuation. The thereData
case points to a constructor argument via Update’.

update : (A:'Set) (a: [A]) (i : Path A a)
— UpdateAai—[A]

update A a here X = maybe id a X

update (‘Fun A B) f (thereFun g) h =
X a — update (Ba) (fa) (ga) (ha)

update (‘Data D) (con xs) (thereData i) X =
con (update’ D D xs i X)

The update function updates the current value (perhaps with
an identity update), updates within a continuation, or uses update’
on a constructor argument within con respectively for the here,
thereFun, and thereData cases.

6.8 Update’ & update’

Next we define the generic closed universe update” and Update’.

Update’ : {O: ‘Set} (R D : ‘Desc O) (xs: Data’ « R » « D »)
— Path’ R D xs — Set
Update’ R (‘Arg A D) (a , xs) (thereArgy i) =
Y (Update A a i)
(ANa’— Data’" «R» «Da»
— Data’ « R » « D (updateAaia’) »)
Update’ R (‘Arg A D) (a, xs) (thereArgs i) =
Update’ R (D a) xs i
Update’ R (‘Rec A D) (f, xs) (thereRec; g) =
Y ((a:[A]) — Update (‘Data R) (fa) (g a))
(N h — let /=X a — update (‘Data R) (fa) (g a) (ha)
inData’ « R» « D (fun « R » of) »
— Data’ « R» « D (fun « R » of’) »)
Update’ R (‘Rec A D) (f, xs) (thereRecs i) =
Update’ R (D (fun « R » of)) xsi

Like with Lookup’, thereArg; is the only case that differs
significantly from its open universe counterpart. The open universe
asked for a Maybe of the current value type A (and a translation
function). Instead, the closed universe asks recursively asks for
some type within A (and a translation function).

update’ : {O: ‘Set} (R D : ‘Desc O) (xs: Data’ « R » « D »)
(i : Path’ R D xs) — Update’ RDxsi — Data’ « R » « D »
update’ R (‘Arg A D) (a, xs) (thereArg; i) (X, f) =

2016/8/5

updateAai X, fxs

update’ R (‘Arg A D) (a, xs) (thereArgs i) X =
a,update’ R (D a)xsiX

update’ R (‘Rec A D) (f, xs) (thereRec g) (h, F) =
(N a — update (‘Data R) (fa) (g a) (ha)), Fxs

update’ R (‘Rec A D) (f, xs) (thereRecs i) X
f,update’ R (D (fun « R» of)) xsi X

Again, the only case that differs significantly from the open uni-
verse is thereArg;. Here, we recursively update something within
the value « (rather than immediately updating the entire «), and ap-
ply the translation function to the second component of the pair.

7. Related Work

Our work concerns programming over InfIR types. We demonstrate
how to do this by using either computational return types (like in
lookup) or computational argument types (like in update).

Recall from the background Section 2.3 that we could write a
total version of head either by using a computational return or ar-
gument type. Thus, we could have written lookup using a computa-
tional argument instead. Below, imagine a computational argument
type Lookup that gathers a product of all the infinitary arguments.
Then, we could write a version of lookup with a computational ar-
gument type Lookup and a static return type, with the following
type signature.

lookup : (A : Type) (i : Path A) — Lookup A i — Type

There are many examples in the literature of functions like
lookup, which take an InfIR type and some extra information using
a computational argument type, to extract information using the
InfIR type. We will discuss several works that fall into this category
below.

Before we do, we point out that the way our lookup works is
somewhat different because it uses a computational return type,
which is not common in the literature. However, the real novelty of
our work is the update function, an example of modifying an InflR
type. Modification of dependent types is tricky due to the depen-
dencies involved, and the higher-order and mutual nature of InfIR
types complicates the situation even more. The update function
solves these problems by using translation functions supplied by
its computational Update argument. An interesting property of the
computation argument type Update is that it needs to be mutually
defined with the function that uses it, update. We are not aware of
any other examples in literature that perform updates to InfIR types.
The remainder of this section summarizes work related to retrieving
information using InfIR types and computational argument types.

File Formats Oury and Swierstra (2008) define an InfIR universe
of file Formats, where later parts of the file format may be depen-
dent on length information gathered from earlier parts of the file
format. They define a generic function for this universe to parse a
list of bits to a value in this universe. They also define a generic
print function that translates a value of this universe into a list of
bits. The meaning function of this universe computes the type of
dependent pairs, but not dependent functions, so parse and print
can get away with static arguments and return types rather than
computational ones.

Induction Chapman et al. (2010) define Descriptions for indexed
dependent types (without induction-recursion). Defining generic
induction principles for types encoded by Descriptions requires a
computational argument type for all the inductive hypotheses (All,
also called Hyps). Although Desc is not inductive-recursive, it is

still infinitary so generic functions over such types, like ind, share
many of the same properties as our generic functions.

Our previous work (Diehl and Sheard 2014) expands upon the
work of Chapman et al., defining an alternative interface to induc-
tion as generic type-theoretic eliminators for Descriptions. Defin-
ing these eliminators involves several nested constructions, where
both computational argument types (to collect inductive hypothe-
ses) and return types (to produce custom eliminator types for each
description) are used for information retrieval but not modification
of infinitary descriptions.

Termination Proofs Coquand (1998) proves termination of Martin-
Lof’s type theory using realizability predicates. The realizabil-
ity model is defined as a family of InfIR types indexed by syn-
tactic expressions. Proofs that correspond to reflection into the
model, reification of the model, and evaluation of expressions into
the model all involve retrieving information contained inside the
model. The model is represented as an InfIR type in the appendix
of the paper. The InfIR type contains expressions, witnesses of
the evaluation relation, and witnesses of expression normality and
neutrality.

Generic Programming & Universal Algebra Benke et al. (2003)
uses Dybjer-Setzer InfIR Descriptions to perform generic program-
ming in the domain of universal algebra. However, a custom restric-
tion of the Desc universe is used for each algebra (e.g. one-sorted
term algebras, many-sorted term algebras, parameterized term alge-
bras, etc.). Some of these algebras restrict the universe to be finitary,
some remain infinitary, but all of them restrict the use of induction-
recursion. As they state, their work could have been instead defined
as restrictions over a universe of indexed inductive types without
induction-recursion.

Ornaments McBride (2011) builds a theory of Ornaments on top
of Descriptions for indexed dependent types (without induction-
recursion). Ornaments allow a description of one type (such as a
Vector) to be related to another type (such as a List) such that a
forgetful map from the more finely indexed type to the less finely
indexed type can be derived as a generic function. Dagand and
McBride (2012) expand this work to also derive a certain class of
functions with less finely indexed types from functions with more
finely indexed types.

8. Extensions & Future Work

In this section we discuss some extensions that have already been
completed, as well as some extensions that we are in the middle of
working on.

Large Open Universe Hierarchy Expert readers may have no-
ticed that the open inductive-recursive Desc universe of Section
5 can actually only encode small induction-recursion, where the
codomain of the mutual function is not Set. Hence, the universe of
that section cannot encode the large Type from Section 3. We de-
liberately kept the open Desc universe small for pedagogical rea-
sons, allowing the definitions and examples to be simple. However,
we have a version of the open universe Desc in the accompany-
ing source code that is universe polymorphic and allows the mutual
function to be large.

Small Closed Universe Hierarchy Our novel closed universe
Desc improves our previous work on modeling a closed universe
of inductive types (Diehl and Sheard 2013). We mentioned in our
previous work that certain inductive types in our closed universe
needed to be raised to a higher universe level then should be nec-
essary. This is remedied with the closed universe of Section 6 by
introducing the type of ‘Desc codes (and their meaning function

2016/8/5

«__»), mutually defined with ‘Set codes (and their meaning func-
tion [).

We are currently working on extending the closed universe Desc
(as well as Path, lookup, and update) to a universe hierarchy, and
do not foresee major complications. However, it is unclear to us
at this time how to encode a closed universe of /arge inductive-
recursive types, or whether it is possible to encode this within type
theory at all.

Type Families Dybjer and Setzer (2006) have extended their
universe of inductive-recursive types to an indexed family of
inductive-recursive types. We have initial results extending some
of the constructions in this paper to that setting, and do not foresee
major complications extending the rest.

Correctness In this paper we define generic lookup and update
functions for InfIR types. Our accompanying source code also
contains a proof of a correctness theorem (for all concrete and
generic definitions) that we could not include herein because it
would take several additional pages to explain. This theorem is a
generalization of the following theorem for more simple types.

Vx,i. update x i (lookup x i) = x

9. Conclusion

Programming with infinitary inductive-recursive (InfIR) types is
complex due to dependencies, higher-order values, and mutual def-
initions. We have demonstrated how to program a lookup function
for retrieving data from InfIR types, and an update function for
modifying data within InfIR types. Besides defining these on con-
crete InfIR types, we have also defined them generically for both
open and closed universes.

Along the way, we introduced a novel closed universe of
inductive-recursive types. We also emphasized a methodology of
writing total functions by either making one of their argument types
or return type computational. Computational types allow functions
that would otherwise be partial to request extra information neces-
sary to make them total.

Finally, we hope that examples of programming with InfIR
types will inspire other dependently typed programmers to do the
same.

Acknowledgments

We are grateful for feedback from anonymous reviewers, especially
feedback about parts of the paper that needed further clarification.
We are also grateful for feedback from Aaron Stump on an earlier
draft of this paper. This work was supported by NSF/CISE/CCF
grant #1320934.

References

M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and
proofs in dependent type theory. Nord. J. Comput., 10(4):265-289, 2003.

J. Chapman, P.-E. Dagand, C. McBride,

N. Oury and W. Swierstra.

and P. Morris. The
gentle art of levitation. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming,
ICFP ’10, pages 3-14, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-794-3. doi: 10.1145/1863543.1863547. URL
http://doi.acm.org/10.1145/1863543.1863547.

C. Coquand. A realizability interpretation of martin-16f’s type theory.
Twenty-Five Years of Constructive Type Theory, 1998.

P-E. Dagand and C. McBride. Transporting functions across or-
naments. In Proceedings of the 17th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’12,
pages 103-114, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1054-3. doi: 10.1145/2364527.2364544. URL
http://doi.acm.org/10.1145/2364527.2364544.

L. Diehl and T. Sheard. Leveling up dependent types: Generic program-

ming over a predicative hierarchy of universes. In Proceedings of
the 2013 ACM SIGPLAN Workshop on Dependently-typed Program-
ming, DTP *13, pages 49-60, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2384-0. doi: 10.1145/2502409.2502414. URL
http://doi.acm.org/10.1145/2502409.2502414.

L. Diehl and T. Sheard. Generic constructors and eliminators from de-

scriptions: Type theory as a dependently typed internal dsl. In Pro-
ceedings of the 10th ACM SIGPLAN Workshop on Generic Program-
ming, WGP 14, pages 3-14, New York, NY, USA, 2014. ACM.

ISBN 978-1-4503-3042-8. doi: 10.1145/2633628.2633630. URL
http://doi.acm.org/10.1145/2633628.2633630.
P. Dybjer. A general formulation of simultaneous inductive-

recursive definitions in type theory. The Journal of Sym-
bolic Logic, 65(2):525-549, 2000. ISSN 00224812. URL
http://www.jstor.org/stable/2586554.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In Proceedings of the 4th International Conference on
Typed Lambda Calculi and Applications, TLCA 99, pages 129-146,
London, UK, UK, 1999. Springer-Verlag. ISBN 3-540-65763-0. URL
http://dl.acm.org/citation.cfm?id=645894.671773.

P. Dybjer and A. Setzer. Indexed induction—recursion. The Journal of Logic
and Algebraic Programming, 66(1):1 — 49, 2006. ISSN 1567-8326. doi:
http://dx.doi.org/10.1016/j.jlap.2005.07.001.

P. Hancock, C. McBride, N. Ghani, L. Malatesta, and T. Altenkirch. Small
induction recursion. In International Conference on Typed Lambda
Calculi and Applications, pages 156—172. Springer, 2013.

S. L. P. Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

P. Martin-Lo6f. Intuitionistic type theory. Notes by Giovanni Sambin, 1984.
C. McBride. Ornamental algebras, algebraic ornaments. 2011.

U. Norell. Towards a practical programming language based on dependent
type theory. Chalmers University of Technology, 2007.

The power of pi. In Proceedings of the
13th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 08, pages 39-50, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-919-7. doi: 10.1145/1411204.1411213. URL
http://doi.acm.org/10.1145/1411204.1411213.

2016/8/5

