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Abstract
Generic programming is about writing a single function that does
something different for each type. In most languages one cannot
case over the structure of types. So in such languages generic pro-
gramming is accomplished by defining a universe, a data structure
isomorphic to some subset of the types supported by the language,
and performing a case analysis over this datatype instead. Such
functions support a limitied level of genericity, limited to the sub-
set of types that the universe encodes. The key to full genericity is
defining a rich enough universe to encode all types in the language.

In this paper we show how to define a universe with a predica-
tive hierarchy of types, encoding a finite set of base types (including
dependent products and sums), and an infinite set of user defined
datatypes. We demonstrate that such a system supports a much
broader notion of generic programming, along with a serendipitous
extension to the usefulness of user defined datatypes with existen-
tial arguments.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

Keywords generic programming, dependent types, universes

1. Introduction
Consider the task of writing a generic show function for every type
defined in a dependently typed programming language. By generic

definition, we mean a definition that does something different de-
pending on the type of the value being shown. Such a function
might have the type:

show : (A : Set) ! A ! String

This type signature is parametrically polymorphic. In languages
such as AGDA (or HASKELL), one cannot perform case analysis on
objects like A classified by Set because they are types (not values)
and this prevents generic definitions.

This paper is about a system with two important properties:

1. It makes programming fully-generic functions, like show, pos-
sible over all datatypes representable in the system.

[Copyright notice will appear here once ’preprint’ option is removed.]

2. It makes programming with existentially quantified datatypes
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more useful. This is because the generic functions from 1. can
be applied to existentially quantified values.

Our system is dependently typed over a predicative hierarchy of
universes, and supports user-extensible types. We describe our sys-
tem in several stages, starting very simply and informally, building
in several steps, to a completely formal mechanized presentation in
the dependently typed language AGDA [Norell 2007]. 2

We present our system as a dependently typed universe [Martin-
Löf 1984]. A universe is made of a code for types (a data structure
representing types), and a meaning function that denotes each code
as a Set in AGDA. A universe acts as a denotational semantics for
the types of a language — using the metalanguage AGDA as the
model — into which each type is denoted. Universes are explained
in detail in the background Section 2.

Using a universe in a dependently typed language to perform
generic programming is common [Benke et al. 2003; Morris et al.
2006; Altenkirch et al. 2007; Chapman et al. 2010; Weirich and
Casinghino 2010]. However, typically the universe being modelled
requires the metalanguage to express generic functions over it.
More concretely, the type signatures of generic functions written
over typical universes cannot be expressed in the language of types
that the universe encodes. In this sense, the generic functions in
such universes are external, or outside of the language model. In
contrast, the type signatures for generic functions that we present
can be represented by the types that the universe encodes. Thus, the
generic functions we present are internal to the language model of
our universe. The universe we present in this paper supports generic
functions which are both internal and fully-generic.

The remainder of the paper is organized as follows:

•
Section 2 Reviews background material on generic dependently
typed programming with universes.

•
Section 3 Presents an informal but intuitive definition of an
AGDA model of a language with a predicative hierarchy of
universes and a fixed collection of types.

•
Section 4 Defines two fully-generic functions: showType re-
turns a string for all types of our language, and show returns a
string for all values of our language.

•
Section 5 Reviews an existing formal AGDA model of a lan-
guage with a predicative hierarchy of universes and a fixed col-
lection of types. This formal model is a simplification of the
model McBride [2011] gives for EPIGRAM 2 [McBride 2005],
and the theory behind it is due to Palmgren [1998]. In the formal

1 By existentially quantified datatype we mean a datatype with a large
dependent pair as an argument, i.e. (A , a) : ‘S Set (l A ! ...)

2 The complete AGDA source code for this development can be accessed at
https://github.com/larrytheliquid/leveling-up
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model the fully-generic but external definitions from Section 4
can be internalized.

•
Section 6 Extends our model with the existentially quantified
type HList of heterogeneous lists. The standard definition of
HList contains a large constructor argument, preventing fully-
generic functions from being defined if this large argument is
Set. However, in our extended universe the large argument
is a type of our object language, rather than a type of the
metalanguage. This makes it possible to write fully-generic
(and internal) functions over HList values.

•
Section 7 Extends our model with the machinery of Chapman
et al. [2010], which makes datatype definitions first-class. After
this change, the model supports user-extensible datatype defi-
nitions, rather than being limited to a fixed collection of types.
The standard definition of the type of datatype definitions Desc
contains the large argument Set. However, we repeat the tech-
nique from Section 6 to turn this large argument into a type
of our object language. This makes it possible to write fully-
generic (and internal) functions over user-defined datatypes.

•
Sections 8, 9, and 10 Introduce a series of fully generic defini-
tions, each successive definition expressive over a larger subset
of the universe of types. It also categorizes similarities between
all our generic definitions, and introduces abtractions which
capture some of the complexity of defining generic functions.
These abstractions provide a reusable interface for writing fully
generic definitions.

Our major contributions are:

• A model that combines the formal universe hierarchy model by
McBride [2011] with the user-extensible datatypes model by
Chapman et al. [2010]. Each of these earlier models has limita-
tions. The limitation of the formal universe hierarchy[McBride
2011] is the inability to add new datatypes without modify-
ing previous fully-generic functions. The limitation of the user-
extensible datatypes model[Chapman et al. 2010] is not being
able to write fully-generic functions over datatypes with previ-
ously defined types as constructor arguments. Our new model
(comprised of two parts TypeForm and DescForm, both ab-
stracted over a universe) over comes both of these limitations.

• Two separate interfaces (Generic and GenericD) that can be
implemented to write fully-generic functions. These interfaces
are formally presented as dependent records. They capture the
similarities between the various fully-generic functions that we
explore in this paper.

Finally, we would like to point out that our langauge model and
functions over it are given in AGDA without turning off any fea-
tures (i.e. positivity checking) or postulating any definitions (i.e.
functional extensionality). As such, the type system underlying the
model we present is an extension of Martin-Löf’s [1975] predica-
tive type theory. Specifically, the type theory is extended with types
and semantics supporting datatype descriptions, and then closed to
support the addition of an eliminator for types. The source code
linked from this paper contains a formalization of the terms of our
model, as an extension of McBride’s [2010] dependent type-safe
syntax and evaluation formalization.

2. Background on generic programming
In dependently typed languages, generic functions are typically
written with the aid of a Martin-Löf [1984] universe. A universe
consists of a collection of codes (a data structure) representing
types, and a meaning function mapping each code to the type it
represents.

2.1 Example of a Martin-Löf universe
Below we define a very simple universe where the collection of
codes is represented by the datatype named Type, whose construc-
tors are the codes ‘Bool and ‘S. Our notational convention is to
prefix each code with a backtick to distinguish it from the type it
represents. The meaning function for this universe is J_K. It maps
the code for booleans ‘Bool to the type for booleans Bool. It also
maps the code for dependent pairs ‘S to the type for dependent
pairs S.

mutual
data Type : Set where
‘Bool : Type
‘S : (A : Type) (B : J A K ! Type) ! Type

J_K : Type ! Set
J ‘Bool K = Bool
J ‘S A B K = S J A K (l a ! J B a K)

Because this universe encodes dependent types, its codes are
defined mutually with their interpretation. This allows ‘S’s second
parameter B to depend on the meaning of its first parameter A.
The mutual definition of Type with J_K is said to be inductive-
recursive [Dybjer and Setzer 1999, 2003].

2.2 Examples of generic functions
Once you have defined a universe you can write generic functions
over the collection of types it represents by case-analyzing its
codes. For example, showType is a generic function that returns
a (sometimes incomplete3) String representation of each type.

showType : (A : Type) ! String
showType ‘Bool = "Bool"
showType (‘S A B) = "S " ++ showType A ++ " l"

You can also write generic functions over all the values in
a universe by adding a parameter whose dependent type is the
meaning function applied to the previous code parameter, e.g.
(A : Type) ! J A K ! ...
Below we define the show function that returns a String represen-
tation of every value in the universe.

show : (A : Type) ! J A K ! String
show ‘Bool true = "true"
show ‘Bool false = "false"
show (‘S A B) (a , b)
= show A a ++ " , " ++ show (B a) b

Notice the similarity between the type signature of show for this
universe and the show presented at the beginning of the introduc-
tion.

show : (A : Set) ! A ! String
show : (A : Type) ! J A K ! String

As we have seen, a generic definition of the second show is easy
to write. However, it is restricted to a very limited universe of types.
In the next section we expand this universe to encompass a larger
collection of types, as well as a predicative hierarchy of levels.

3. Informal definition of universe hierarchy
Now we expand the collection of codes to represent all types of a
dependently typed language with a fixed collection of base types
and a preliminary and informal predicative hierarchy of universes.
Once again, the codes and the meaning function of the universe are

3 We return ”l” to represent the higher-order second argument to ‘S.
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defined mutually using induction-recursion. Below we give both
definitions separately, without a mutual block, for presentational
purposes.

The universe definition below is not strictly-positive 4 , but it
provides intuition to help understand the actual and formal defini-
tion given in Section 5. The universe’s fixed collection of base types
consists of ‘? ‘>, ‘Bool, ‘N, and ‘String. The dependent type
formers are ‘P and ‘S. This much is standard. One new construc-
tor is ‘Type, the type of types in the previous level of the universe
hierarchy. We add universe levels to our definition to remain pred-
icative. Failing to do so makes the language inconsistent as a logic
because Type : Type can be exploited to form paradoxes [Girard
1972; Hurkens 1995]. The other new constructor is ‘J_K. It lifts
a type from the previous level to the current level. This lifting is
reflected in the type index of ‘J_K, which must be the successor of
the level of its argument.

data Type : N ! Set where
‘? ‘> ‘Bool ‘N ‘String : {` : N} ! Type `
‘P ‘S : {` : N}
(A : Type `) (B : J ` | A K ! Type `)
! Type `

‘Type : {` : N} ! Type `
‘J_K : {` : N} ! Type ` ! Type (suc `)

As a shorthand, we also define the code representing non-
dependent functions as a special case of the code representing
dependent functions.

_‘!_ : {` : N} (A B : Type `) ! Type `
A ‘! B = ‘P A (const B)

Type’s meaning function (J_|_K) is defined below. The cases for
‘Type and ‘J_K are the most interesting. The meaning of ‘Type
depends on the universe level. At universe level zero no previous
universe exists, so the meaning of ‘Type is the empty type ?.
At any successive universe level the meaning of ‘Type is the
datatype Type indexed by the previous universe.5 The meaning of
a type from the previous universe lifted into the current universe —
using constructor ‘J_K — is the same as the type’s meaning in the
previous universe.

J_|_K : (` : N) ! Type ` ! Set
J ` | ‘? K = ?
J ` | ‘> K = >
J ` | ‘Bool K = Bool
J ` | ‘N K = N
J ` | ‘String K = String
J ` | ‘P A B K = (a : J ` | A K) ! J ` | B a K
J ` | ‘S A B K = S J ` | A K (l a ! J ` | B a K)
J zero | ‘Type K = ?
J suc ` | ‘Type K = Type `
J suc ` | ‘J A K K = J ` | A K

4 We even call it informal because it does not pass Agda’s positivity check.
However, you might expect Agda’s checker to eventually recognize the
positivity of the definition, as it is possible to represent an isomorphic
definition by our forthcoming encoding.
5 This definition of Type is not strictly-positive because J suc ` | ‘Type

K is defined to return itself, albeit at a lower index. The negative oc-
currence manifests in the B argument of the ‘P and ‘S constructors.
For example, ‘S at universe suc ` is ‘S : (A : Type (suc `)) (B :

J suc ` | A K ! Type (suc `)) ! Type (suc `), which reduces
to ‘S : (A : Type (suc `)) (B : Type ` ! Type (suc `)) !
Type (suc `). The reduced value is not strictly-positive in B.

4. Generic definition of show
Now we give examples of generic functions that can be written in
the universe of Section 3. We define showType and show as inter-
nalized generic functions, meaning their types can be represented
by our universe.

4.1 Definition of showType
Below is a definition of showType for our expanded universe of
Section 3. The type signature for the old showType is (A : Type)
! String. This type signature cannot be represented by the types
of the old universe, which only consists of ‘Bool and ‘S. There-
fore, the old generic definition of showType is only definable
within the metalanguage, but not within the object language that
the universe models. However, our new universe has type codes for
‘Type and _‘!_, so the function can be internalized by the type
signature ‘Type ‘! ‘String.

showType : (` : N) ! J suc ` | ‘Type ‘! ‘String K
showType ` ‘? = "?"
showType ` ‘> = ">"
showType ` ‘Bool = "Bool"
showType ` ‘N = "N"
showType ` ‘String = "String"
showType ` (‘P A B) = "P " ++ showType ` A ++ " l"
showType ` (‘S A B) = "S " ++ showType ` A ++ " l"
showType ` ‘Type = "Type"
showType zero ‘J () K
showType (suc `) ‘J A K = "J " ++ showType ` A ++ " K"

The interesting cases of showType are the cases for the universe
lifting operator ‘J_K. These cases must case analyze the universe
level. If the universe level is zero, then the collection of types of
the previous universe level is the empty type ?, so there is nothing
to show. Empty parentheses () is special AGDA syntax indicating
that a value at that location cannot be inhabited. If the the universe
level is the successor of another level, then we are justified to show
the type of the previous universe level because the level and type
get smaller in the recursive call.

4.2 Definition of show
Now we are ready to define show generically. Briefly compare the
type signature of show presented at the beginning of the introduc-
tion to this final version.

show : (A : Set) ! A ! String
show : (` : N)

! J suc ` | ‘P ‘Type (l A ! ‘J A K ‘! ‘String) K

The first argument of the dependent function is the type to be
shown. The l binds A to a value of ‘Type, which is a type in
the previous universe in the hierarchy. We use ‘J_K in the second
argument of the function, lifting A from the previous universe into
the current universe.

Compared to showType, the dependently typed show function
has an extra argument requiring not only a type but a value of that
type. Notice that while the type of ‘S could not show its higher
order second argument, the dependent pair value (a , b) can be
shown completely.

The cases for values of type ‘Type and ‘J_K are the most
interesting. If the type is ‘Type, then the values are elements of the
datatype Type (from the previous universe level). If the universe
level is zero, then there can be no such types. However, if the
universe level is the successor of another level, then the value is an
element of the datatype Type, and we can show it with showType.

If the type is ‘J_K, then the values are values of the previous
universe level. Again, if the universe level is zero then there are no
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such values. But if the the universe level is the successor of another
level then we can show the lower-level value using a recursive
call that is justified by the universe level and type decreasing. To
indicate that the value shown is from a previous universe level and
has been lifted to the current level, we return the string “lift” along
with the actual value.

show : (` : N)
! J suc ` | ‘P ‘Type (l A ! ‘J A K ‘! ‘String) K

show ` ‘? ()
show ` ‘> tt = "tt"
show ` ‘Bool true = "true"
show ` ‘Bool false = "false"
show ` ‘N zero = "zero"
show ` ‘N (suc n) = "suc " ++ show ` ‘N n
show ` ‘String str = "\"" ++ str ++ "\""
show ` (‘P A B) f = "l"
show ` (‘S A B) (a , b) =
show ` A a ++ " , " ++ show ` (B a) b

show zero ‘Type ()
show (suc `) ‘Type A = showType ` A
show zero ‘J () K a
show (suc `) ‘J A K a = "lift " ++ show ` A a

5. Formal definition of universe hierarchy
Now we replace the informal but intuitive universe definition from
Section 3 with a formal definition. In fact we have not been using
a single universe, but a family of universes indexed by the natural
numbers — representing levels in the predicative hierarchy — each
one containing the entire previous universe. The construction we
are about to describe is due to Palmgren [1998]. We would like to
thank McBride [2011] for making us aware of its mechanization,
a simplication of which is presented below. Our simplication drops
an explicit notion of equality from the universe hierarchy model.
The construction and its mechanization are not novel, we merely
seek to popularize them so that their utility for generic program-
ming becomes obvious. The construction is presented in two parts.

Universe In the first part we avoid defining Type directly and
instead define TypeForm, a type parameterized by a universe. A
Universe is a dependent record containing the collection of Codes
and the Meaning function dependent on those codes.

record Universe : Set1 where
field

Codes : Set
Meaning : Codes ! Set

TypeForm TypeForm is similar in structure to our informal Type
from Section 3. The differences are the types of the constructors
‘J_K and ‘Type. The lift constructor ‘J_K took a code from the
previous universe as an argument. The type of this argument now
becomes (Codes U) rather than (Type `). The same substitution
is made when defining the meaning of the constructor ‘Type. Sig-
nificantly, (Codes U) is a type parameter rather than a recursive
occurrence of (Type `), making this new definition strictly posi-
tive. The meaning of ‘J A K is defined as the meaning function of
the previous universe applied to the code A of the previous universe.
Now it is represented using (Meaning U A) rather than J ` | A K.

mutual
data TypeForm (U : Universe) : Set where
‘? ‘> ‘Bool ‘N ‘String ‘Type : TypeForm U
‘P ‘S : (A : TypeForm U)

(B : J U / A K ! TypeForm U)
! TypeForm U

‘J_K : Universe.Codes U ! TypeForm U

J_/_K : (U : Universe) ! TypeForm U ! Set
J U / ‘? K = ?
J U / ‘> K = >
J U / ‘Bool K = Bool
J U / ‘N K = N
J U / ‘String K = String
J U / ‘P A B K = (a : J U / A K) ! J U / B a K
J U / ‘S A B K = S J U / A K (l a ! J U / B a K)
J U / ‘Type K = Universe.Codes U
J U / ‘J A K K = Universe.Meaning U A

The definition of TypeForm is strictly-positive because it is
parametrically defined over an arbitrary universe record. TypeForm
could be instantiated with any universe, but we will always instan-
tiate it with the previous universe.

Level Below is a function that computes the universe we have in
mind from a natural number representing the level in the hieararchy.

Level : (` : N) ! Universe
Level zero = record { Codes = ?; Meaning=case? }
Level (suc `) = record { Codes = TypeForm (Level `)

; Meaning = J_/_K (Level `) }

Type Finally, we can define the intended versions of TypeForm
and the meaning function that are parameterized by a natural num-
ber instead of a universe. The universe parameters are instantiated
with an appropriate Level computed from the natural number.

Type : N ! Set
Type ` = TypeForm (Level `)

J_|_K : (` : N) ! Type ` ! Set
J ` | A K = J Level ` / A K

The type signatures of these wrapper functions match the type
signatures given in Section 3. Additionally, all of the examples in
Section 4 work with our new definitions.

6. Definition of heterogeneous lists
Section 4 shows how our universe of types makes it possible to
write generic functions like showType and show. In this section
we show our universe also makes existentially quantified datatypes
more attractive to programmers. We use the type of heterogeneous
lists as an example of an existentially quantified type.

6.1 Definition of HList
First we consider the type of heterogeneous lists defined as an or-
dinary AGDA datatype. Unlike the type List, HList is not para-
metric in the type of values it stores. Instead, the cons constructor
takes the type of the value it extends the list with as an argument.

In order for this to be a well-founded definition, the type of
HList is Set1. In AGDA, the type Set is shorthand for Set0 . Thus,
the type of HList is one universe level higher than the type of the
existential quantifier argument A in the cons constructor. We could
make this definition universe polymorphic using AGDA universe
levels, but we use this version instead for simplicity.

data HList : Set1 where
nil : HList
cons : (A : Set) ! A ! HList ! HList

myHList : HList
myHList = cons Bool false (cons N 7 nil)
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The value myHList demonstrates that there is no problem in-
troducing HList values. We can even define a map function for
HList.

mapHList : (S Set (l A ! A) ! S Set (l A ! A))
! HList ! HList

mapHList f nil = nil
mapHList f (cons A a xs) =

let B , b = f (A , a) in
cons B b (mapHList f xs)

The problem occurs when we try to use mapHList by partially
applying it to a mapping function. There are very few useful func-
tions with the right type. It is possible to write many functions that
return a constant value, like (Bool , true). However, in AGDA
the identity function is the only thing that we could write that actu-
ally uses the type argument to the function. This is because the first
argument is a Set, which we cannot case analyze. Luckily for us,
we have faced this problem before when we thought about writing
show : (A : Set) ! A ! String in the introduction.

6.2 Definition of HListForm
Existentially quantified datatypes like HList are normally avoided
when programming in AGDA because it is not possible to write any
interesting functions operating on them. In fact, the existential ar-
gument (A : Set) ! A ! ... is usually replaced with a code
and value of some universe that constrains the possible types that
the list can hold. However, unlike AGDA’s Set, our Type supports
case analysis, so it is not necessary to constrain the universe.

HListForm Below is the datatype of heterogeneous lists, but we
have parameterized it by a universe and called it HListForm.
This is analogous to the definition of TypeForm from Section 5,
which is also parameterized by a universe. Recall that in the formal
definition of TypeForm, a Universe.Codes U argument repre-
sents a type at a previous universe level. Thus, the type stored
in an HListForm is one level below the HListForm itself. This
same stratification technique occurred in the previous definition
of HList, but using the universe hierarchy of the metalanguage
AGDA.

data HListForm (U : Universe) : Set where
nil : HListForm U
cons : (A : Universe.Codes U)

! Universe.Meaning U A
! HListForm U ! HListForm U

6.3 Adding HList to our universe
Because we defined HListForm as a type parameterized by a
universe, and replaced occurrences of the large argument Set with
codes of the universes, we are able to add ‘HList to our fixed
universe of types.

mutual
data TypeForm (U : Universe) : Set where
{- ... previous constructors ... -}
‘HList : TypeForm U

J_/_K : (U : Universe) ! TypeForm U ! Set
{- ... previous cases ... -}
J U / ‘HList K = HListForm U

Notice that the type constructor ‘HList does not have a uni-
verse argument U. This is because a user of our universe should
only need to think about the high-level type ‘HList. We formalize
an ‘HList at a particular universe level with HListForm behind
the scenes.

6.4 Applying generic functions to an HList
Even though cons of ‘HList is an existentially quantified value,
we instantiate the quantifier with a Type that we may case analyze.
Thus, now it is possible to map generic functions over heteroge-
neous lists. This opens up new opportunities for data representation
in dependently typed programs, because we can play the same trick
for any existentially quantified datatype.

‘mapHList : (` : N) ! J suc ` |
(‘S ‘Type ‘J_K ‘! ‘S ‘Type ‘J_K)
‘! ‘HList ‘! ‘HList K

‘mapHList ` f nil = nil
‘mapHList ` f (cons A a xs) =
let B , b = f (A , a) in
cons B b (‘mapHList ` f xs)

‘myHList : (` : N) ! J suc ` | ‘HList K
‘myHList ` = cons ‘Bool false (cons ‘N 7 nil)

‘myHListShown : (` : N) ! J suc ` | ‘HList K
‘myHListShown ` = ‘mapHList `
(l { (A , a) ! ‘String , show ` A a })
(‘myHList `)

Above are the fruits of our labor, as witnessed by ‘myHListShown.
This demonstrates how we can map a generic show function across
all values of a heterogeneous list containing any Type in our lan-
guage.

In order to show heterogeneous lists, we also need to extend the
showType and show functions to handle the extra cases. This is
accomplished by defining a helper function showHList.

showType : (` : N) ! J suc ` | ‘Type ‘! ‘String K
{- ... previous cases ... -}
showType ` ‘HList = "Hlist"

mutual
show : (` : N)

! J suc ` | ‘P ‘Type (l A ! ‘J A K ‘! ‘String) K
{- ... previous cases ... -}
show ` ‘HList xs = showHList ` xs

showHList : (` : N)
! J ` | ‘HList ‘! ‘String K

showHList ` nil = "nil"
showHList zero (cons () a xs)
showHList (suc `) (cons A a xs) =
"cons " ++ showType ` A ++ " " ++ show ` A a

++ " " ++ showHList (suc `) xs

7. User-extensible datatype definitions
The universe Type of Section 5 supports generic programming over
all types in a hierarchy of universes, but the collection of types is
fixed ahead of time. In this section we extend the Type universe to
support a user-extensible collection of types. To put it another way,
we construct a closed model that includes all datatypes that you
would normally declare using the data keyword in a dependently
typed language like AGDA. In this extended universe we no longer
need to add datatypes to our universe in an ad hoc fashion, like we
did when adding ‘HList in Section 6.

Chapman et al. [2010] show how to encode a user-extensible
collection of datatypes into a dependent type system. For pedagogi-
cal reasons we limit ourselves to their construction for non-indexed
datatypes, but the techniques of this section extend to their con-
struction for indexed families of datatypes. Below we review their
construction, and later we incorporate it into our Type universe.
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7.1 Datatype description examples
Consider the standard datatype declaration of a natural number
below. A natural number is either zero or the successor of another
natural number.

data N : Set where
zero : N
suc : (n : N) ! N

This datatype definition describes two ways of constructing a
natural number. One way uses the zero constructor, which has
no arguments. The other way uses the suc constructor, which has
a single recursive argument. By recursive argument we mean an
argument of the same datatype currently being defined.

We present the datatype of descriptions shortly, but first con-
sider the following simple example of the description for natural
numbers. The type of natural numbers is described as a choice (])
between two constructors. The first choice represents the zero con-
structor as the unit type >. The second choice represents the suc
constructor, which takes a recursive argument (X).

ND : Desc
ND = ‘> ‘] ‘X

The datatype of descriptions is given below. Notice that the ‘P
and ‘S constructors have a large argument (A : Set), so the type
of Desc must be the higher universe Set1. Thus Desc is a type with
large constructor arguments, just like HList of Section 6.

data Desc : Set1 where
‘> ‘X : Desc
_‘]_ _‘⇥_ : (D E : Desc) ! Desc
‘P ‘S : (A : Set) (D : A ! Desc) ! Desc

The type of descriptions encodes strictly-positive pattern func-
tors. Below is the function that when partially applied to a Desc,
returns the endofunctor on Set that the Desc encodes.

J_Kd : Desc ! Set ! Set
J ‘> Kd X = >
J ‘X Kd X = X
J D ‘] E Kd X =
S Bool (l b ! if b then J D Kd X else J E Kd X )

J D ‘⇥ E Kd X = S (J D Kd X) (const (J E Kd X))
J ‘P A D Kd X = (a : A) ! J D a Kd X
J ‘S A D Kd X = S A (l a ! J D a Kd X)

The endofunctor meaning function J_Kd is only used in one
place. It is used to define the least fixpoint operator below. Most
readers have probably seen the fixpoint of a functor defined as
follows.

data m (F : Functor) : Set where
con : F (m F) ! m F

Below, in our definition of m, instead of parameterizing by a
functor (F) we parameterize by a description (D), and apply the
meaning function J_Kd to obtain a functor.

data m (D : Desc) : Set where
con : J D Kd (m D) ! m D

Applying the operator m to a description yields the (potentially
recursive) datatype encoded by the description. Using these defini-
tions, we can take the fixpoint of our description of the datatype of
natural numbers and construct values with it.

mN : Set

mN = m ND

myZero : mN
myZero = con (true , tt)

myOne : mN
myOne = con (false , myZero)

Notice that Desc : Set1 and m : Desc ! Set form the
type of codes and the meaning function of yet another instance
of a Martin-Löf universe. It makes no difference that the “meaning
function” m is a type constructor, rather than a proper function.

7.2 Trouble with the existential quantifier
In the simplest case, the ‘S constructor of Desc can be used to
add an argument to a constructor, which is a previously defined
value. In the more complicated case, the types of other constructor
arguments may depend on that value. Below we consider the simple
case by defining the description for a type called WrapBool. This
type merely wraps a boolean in a constructor.

data WrapBool : Set where
wrap : Bool ! WrapBool

WrapBoolD : Desc
WrapBoolD = ‘S Bool (const ‘>)

mWrapBool : Set
mWrapBool = m WrapBoolD

myWrap : mWrapBool
myWrap = con (false , tt)

Recall that Desc is a type with constructors, such as ‘S, that
have large arguments. Furthermore, the fixpoint of a Desc contain-
ing a ‘S is an existentially quantified type. We find ourselves in the
same situation as with HList of Section 6. We can construct values
of our existentially quantified datatype, like myWrap. However, we
run into trouble when trying to define generic functions over the
type Desc or fixpoints thereof. Consider the type signatures of the
two functions below.

showDesc : Desc ! String
showm : (D : Desc) ! m D ! String

These generic functions are analogous to showType and show,
respectively. When implementing showDesc, we get stuck trying
to show the first argument of ‘S. Similarly, we know that the value
of the ‘S case of showm has to be a dependent pair, but we cannot
case analyze the type of the first component to show the value.

7.3 Definition of DescForm
The original encoding of the universe of descriptions of datatypes
by Chapman et al. [2010] works perfectly well to represent datatypes.
However, due to the use of large arguments like Set in the ‘P and
‘S constructors of ‘Desc, fully-generic definitions are not possible.
Semantically, this means that it is impossible to write fully-generic
functions over datatypes with previously defined types as construc-
tor arguments.

DescForm J / Kd and m In order to lift generic programming
restrictions due to Set arguments, and to incorporate descriptions
into our language universe, we introduce DescForm and the mean-
ing function J_/_Kd, both of which are parameterized by a universe.
Like before, the meaning function J_/_Kd returns an endofunctor
when partially applied to a universe and a description.
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data DescForm (U : Universe) : Set where
‘> ‘X : DescForm U
_‘]_ _‘⇥_ : (D E : DescForm U) ! DescForm U
‘P ‘S : (A : Universe.Codes U)
(D : Universe.Meaning U A ! DescForm U)
! DescForm U

J_/_Kd : (U : Universe) ! DescForm U ! Set ! Set
J U / ‘> Kd X = >
J U / ‘X Kd X = X
J U / D ‘] E Kd X =
S Bool (l b !
if b then J U / D Kd X else J U / E Kd X )

J U / D ‘⇥ E Kd X =
S (J U / D Kd X) (const (J U / E Kd X))

J U / ‘P A D Kd X =
(a : Universe.Meaning U A) ! J U / D a Kd X

J U / ‘S A D Kd X =
S (Universe.Meaning U A) (l a ! J U / D a Kd X)

The least fixpoint operator is now parameterized by universe as
well as a description. In the constructor con, (as in the Chapman
construction above) the meaning function applied to the universe
and description parameters J U / D Kd denotes a functor.

data m {U : Universe} (D : DescForm U) : Set where
con : J U / D Kd (m D) ! m D

Replacing a datatype Desc with DescForm, which is parame-
terized by a universe, is nothing new. We did the same thing in
Section 6, where we replaced HList by HListForm. Just like be-
fore, this change consists of replacing large metalanguage Set ar-
guments with object language Type arguments.

7.4 Adding DescForm and m to our universe
The language universe we have been using has now grown to in-
clude descriptions of datatypes DescForm, their meaning func-
tion J_/_Kd, and their least fixpoints m. So, we now add them to
TypeForm, just as we added HList.

mutual
data TypeForm (U : Universe) : Set where

{- ... previous constructors ... -}
‘Desc : TypeForm U
‘J_Kd : DescForm U ! TypeForm U ! TypeForm U
‘m : DescForm U ! TypeForm U

J_/_K : (U : Universe) ! TypeForm U ! Set
{- ... previous cases ... -}
J U / ‘Desc K = DescForm U
J U / ‘J D Kd X K = J U / D Kd J U / X K
J U / ‘m D K = m D

7.5 Internalized datatype description examples
The user-extensible datatype examples of Section 7.1 used the type
Desc, which is external to our universe. Now we give internalized
examples that instead use ‘Desc. Below are the internalized natural
number examples.

‘ND : (` : N) ! J ` | ‘Desc K
‘ND ` = ‘> ‘] ‘X

‘myZero : (` : N)! J ` | ‘m (‘ND `) K
‘myZero ` = con (true , tt)

‘myOne : (` : N)! J ` | ‘m (‘ND `) K
‘myOne ` = con (false , ‘myZero `)

Notice that we can represent natural numbers using a descrip-
tion. So, we could simplify TypeForm by removing the now un-
necessary ‘N constructor. Next we give the internalized WrapBool
examples.

‘WrapBoolD : (` : N) ! J suc ` | ‘Desc K
‘WrapBoolD ` = ‘S ‘Bool (const ‘>)

‘myWrap : (` : N) ! J suc ` | ‘m (‘WrapBoolD `) K
‘myWrap ` = con (false , tt)

Last but not least, HList can also be represented using a de-
scription. Thus, the ad hoc extension of TypeForm by ‘HList is
also unnecessary.

‘HListD : (` : N) ! J suc ` | ‘Desc K
‘HListD ` = ‘> ‘]
‘S ‘Type (l A ! ‘S ‘J A K (const ‘X))

‘mHList : (` : N) ! Set
‘mHList ` = m (‘HListD `)

‘myHList : (` : N)
! J suc (suc `) | ‘m (‘HListD (suc `)) K

‘myHList ` =
con (false , ‘Bool , false ,
con (false , ‘N , 7 , con (true , tt)))

7.6 Unnecessarily large fixpoint universe level
Consider the datatype description ‘WrapBoolD, which is con-
structed with a ‘S. The first argument to ‘S is the type ‘Bool.
If the universe level of ‘WrapBoolD were zero, then the previous
universe of types would be empty, so applying ‘S to ‘Bool would
not be type correct. Thus, the type of ‘WrapBoolD must be greater
than zero, and we type it polymorphically as suc `. This much
is correct. Similarly, WrapBoolD has type Desc, which has type
Set1, making the ‘S constructor well-founded.

However, our model is not quite satisfactory when it comes to
the fixpoints of definitions using ‘S or ‘P. Compare the following
two values.

mWrapBool : Set
mWrapBool = m WrapBoolD

‘mWrapBoolD : (` : N) ! Type (suc `)
‘mWrapBoolD ` = ‘m (‘WrapBoolD `)

The type mWrapBool has universe level zero rather than one,
whereas the universe level of ‘mWrapBoolD is suc ` (we would
expect it to analogously be `). This is because the datatype dec-
laration of m for Desc lowers the universe level, compared to the
D : Desc datatype parameter at a higher level.

In contrast, when we add the constructor ‘m : DescForm
U ! TypeForm U to TypeForm, the universe level U for the
DescForm parameter and the returned TypeForm are the same.
We leave it to future work to change the model so that we pass
DescForm a higher universe level than the returned TypeForm rep-
resenting the type of ‘m.

7.7 Extending show to Desc
At the end of Section 6 we saw that in order to apply ‘mapHList to
show, we had to first extend showType and show to support the new
TypeForm constructor ‘HList. In this section we have extended
TypeForm with ‘Desc, ‘J_Kd and ‘m instead. Correspondingly, we
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need to extend showType and show, and do so by mutually defining
showDesc and showd. Note that we previously got stuck trying to
define showDesc and showm in Section 7.2. This was because we
were using the external datatype Desc, which contains large Set
arguments. Now that we have switched to DescForm, which uses
our internalized representation, it is finally possible to write those
generic functions! Note that we do not define showm directly as it
is a special case of showd. In the internalized representation, the
first argument of the ‘S constructor for DescForm is a TypeForm,
which we may case analyze.

mutual
showType : (` : N) ! J suc ` | ‘Type ‘! ‘String K
{- ... previous cases ... -}
showType ` ‘Desc = "Desc"
showType ` (‘J D Kd X) =
"J " ++ showDesc ` D ++ " Kd " ++ showType ` X

showType ` (‘m D) = "m " ++ showDesc ` D

show : (` : N)
! J suc ` | ‘P ‘Type (l A ! ‘J A K ‘! ‘String) K

{- ... previous cases ... -}
show ` ‘Desc D = showDesc ` D
show ` (‘J D Kd X) x = showd ` D X x
show ` (‘m D) (con x) = "con " ++ showd ` D (‘m D) x

showDesc : (` : N) ! J ` | ‘Desc ‘! ‘String K
showDesc ` ‘> = ">"
showDesc ` ‘X = "X"
showDesc ` (D ‘] E) =
showDesc ` D ++ " ] " ++ showDesc ` E

showDesc ` (D ‘⇥ E) =
showDesc ` D ++ " ⇥ " ++ showDesc ` E

showDesc zero (‘P () D)
showDesc (suc `) (‘P A D) =
"P " ++ showType ` A ++ " l"

showDesc zero (‘S () D)
showDesc (suc `) (‘S A D) =
"S " ++ showType ` A ++ " l"

showm : (` : N)
! J ` | ‘P ‘Desc (l D ! ‘m D ‘! ‘String) K

showm ` D (con x) = showd ` D D x

The definition of showDesc is similar to showType, except for
the ‘P and ‘S cases. The first argument of those constructors is
a type from the previous universe. For this reason, the ‘P and ‘S
cases must case analyze the universe level. If the universe level
is zero, then there is no previous universe so those cases are left
undefined. In this sense, the ‘P and ‘S cases of showDesc are
similar to the ‘J_K case of showType because they both operate
on a type argument from the previous universe level.

The definition of show ` (‘m D) (con x) uses the helper
function showd that we describe below. It belongs to the mutual
block of functions above, but we describe it separately below.
A hypothetical function such as showm, which would be used in
such a case, cannot be defined directly by pattern matching on
the description argument. This is because the types are not general
enough when we need to make recursive function calls. The helper
function showd has a more general type, making its recursive calls
well-typed.

showd : (` : N)
! J suc ` | ‘P ‘J ‘Desc K (l D !

‘P ‘Type (l X ! ‘J ‘J D Kd X K ‘! ‘String)) K

showd ` ‘> X tt = "tt"
showd ` ‘X X x = show ` X x
showd ` (D1 ‘] D2) X (true , x) =
"inj1 " ++ showd ` D1 X x

showd ` (D1 ‘] D2) X (false , x) =
"inj2 " ++ showd ` D2 X x

showd ` (D1 ‘⇥ D2) X (x , y) =
showd ` D1 X x ++ " , " ++ showd ` D2 X y

showd zero (‘P () D) X f
showd (suc `) (‘P A D) X f = "l"
showd zero (‘S () D) X (x , y)
showd (suc `) (‘S A D) X (x , y) =
show ` A x ++ " , " ++ showd (suc `) (D x) X y

7.8 Avoiding functional extentionality
In a previous version of this paper we were tempted to keep the
universe of types (TypeForm) smaller by not including a code for
the meaning of descriptions ‘J_Kd. Instead, it is possible to give
a definitional variant of this code for the meaning function by
computing a Type, rather than a Set. We present this alternative
below.

‘J_|_Kd : (` : N) ! Desc ` ! Type ` ! Type `
‘J ` | ‘> Kd X = ‘>
‘J ` | ‘X Kd X = X
‘J ` | D ‘] E Kd X =
‘S ‘Bool
(l b ! if b then ‘J ` | D Kd X else ‘J ` | E Kd X)

‘J ` | D ‘⇥ E Kd X =
‘S (‘J ` | D Kd X) (const (‘J ` | E Kd X))

‘J ` | ‘P A D Kd X = ‘P ‘J A K (l a ! ‘J ` | D a Kd X)
‘J ` | ‘S A D Kd X = ‘S ‘J A K (l a ! ‘J ` | D a Kd X)

Recall that we restrict ourselves to using internalized types,
rather than using meta-level types directly. For example, below
we give the constructor of ‘m as a definition in order to show its
internalized type.

‘con : (` : N) ! J suc ` | ‘P ‘J ‘Desc K
(l D ! ‘J ‘J D Kd (‘m D) K ‘! ‘J ‘m D K) K

‘con ` D x = con x

On the right-hand-side of this definition, con expects a value
of type J Level ` / D Kd (m D). Luckily, because TypeForm
contatins the code for ‘J_Kd, its meaning function J_K can pattern
match on this code to deliver exactly the type that con expects.

In contrast, consider the typing situation we find ourselves in
when trying to define ‘con2 for the definitional variant of ‘J_|_Kd.

‘con2 : (` : N) ! J suc ` | ‘P ‘J ‘Desc K
(l D ! ‘J ‘J ` | D Kd (‘m D) K ‘! ‘J ‘m D K) K

‘con2 ` D x = con ?

Now the type of x is J Level ` / ‘J ` | D Kd (‘m D) K,
but con requires a J Level ` / D Kd (m D). The meaning func-
tion J_K of TypeForm is stuck evaluating, because our defini-
tion of ‘J_|_Kd is attempting to case-analyze its Desc argument.
In order to push these types through we would need to prove a
lemma that J Level ` / ‘J ` | D Kd (‘m D) K will always
equal J Level ` / D Kd (m D). Unfortunately, the meta-level
meaning function for descriptions J_/_Kd interprets ‘P as a meta-
level function type. Thus proving this equality requires functional
extentionality, which is a signficant extra requirement on the un-
derlying type theory that our AGDA model denotes. Instead, we
choose to internalize J_/_Kd as a code of TypeForm and remain in
a vanilla variant of Martin-Löf’s intentional type theory.
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7.9 Indexed families of datatypes
At the beginning of this section we mentioned that we limited
ourselves to considering a construction that described non-indexed
datatype definitions. Even with this limitation, it is still possible
to define many indexed datatypes as functions rather than with
descriptions.

Below is the definition of vectors as a function that takes a
natural number as an argument and computes a type. If the natural
number index is zero, the vector constructor is nil. Because nil
has no arguments, it is represented by the unit type code ‘>. If
the index is the successor of some number, then the constructor is
cons. The cons constructor takes an argument corresponding to
the type parameter of the vector, and recursive arguments for the
remainder of the vector length.

‘Vec : (` : N) ! J suc ` | ‘Type ‘! ‘N ‘! ‘Type K
‘Vec ` A zero = ‘>
‘Vec ` A (suc n) = ‘S A (const (‘Vec ` A n))

‘myVec : (` : N) ! J ` | ‘Vec ` ‘Bool 2 K
‘myVec ` = (false , (true , tt))

In essence, ‘Vec unfolds its natural number argument into a
nested “n-tuple”, where “n” is the value of the natural number
index.

Now consider a vector function ‘VecD that returns a description
rather than a type. This function is similar in structure to ‘Vec, but
it returns descriptions of types rather than actual types.

‘VecD : (` : N) ! J suc ` | ‘Type ‘! ‘N ‘! ‘Desc K
‘VecD ` A zero = ‘>
‘VecD ` A (suc n) = ‘S A (const (‘VecD ` A n))

Chapman et al. [2010] define two kinds of descriptions: Desc
(for non-indexed datatypes) and IDesc (for indexed dataypes like
Vec). The indexed version, IDesc, has a fixpoint operator that takes
a function from an index to a description as a type argument. In con-
trast, the non-indexed m of this paper (following the development
of Chapmans Desc) takes a description as an argument. Thus, if we
were to extend our construction to an indexed fixpoint operator, it
could take ‘VecD as an argument! This functional representation of
indexed datatypes is motivated by research on optimized represen-
tations of dependent types performed by Brady et al. [2003]. The
techniques of this section generalize to the indexed construction
described above.

7.10 A simpler Desc constructor
As mentioned immediately above, the Desc type presented herein
is the non-indexed variant of the datatype definition machinery by
[Chapman et al. 2010]. To make it easier for readers familiar with
their work to follow along, we kept the ‘S constructor of their
Desc type. The ‘S serves two purposes. First to introduce datatypes
whose constructors have dependent types, and second to support
datatypes that have components which are described by previously
defined descriptions. However, in this non-indexed setting it suf-
fices to have a much simpler non-dependent constructor ‘[_] to
serve the same purposes. The first purpose, dependently typed con-
structors (in a non-indexed world) can be encoded by embedding
the ‘S of TypeForm inside the new non-dependent ‘[_]. Thus
‘[_] need only support the second purpose. For the remainder of
this paper we will add the non-dependent constructor ‘[_], but also
keep the old ‘S so that expert readers can imagine how definitions
extend to IDesc.

data DescForm (U : Universe) : Set where
{- ... previous constructors ... -}

‘[_] : Universe.Codes U ! DescForm U

J_/_Kd : (U : Universe) ! DescForm U ! Set ! Set
{- ... previous cases ... -}
J U / ‘[ A ] Kd X = Universe.Meaning U A

8. Generic definition of double
The universe construction of this paper makes it possible to write
fully-generic functions – functions defined over all possible types.
The richest example, that we have seen so far, is show, first intro-
duced in Section 4. While show is defined for all values, it doesn’t
recurse into all possible values. Specifically, since it is not possible
to recurse into higher-order values, show returns the string “�” in
those cases. In this section we give a fully-generic double func-
tion. While the double of this section is also not “complete”, in
the sense of recursing into all possible values, it recurses into dif-
ferent set of values when compared with show, and motivates a
more complete double function in the next section. The intended
meaning of the double function is that it replaces all occurrences
of a natural number, embedded in a value of any type, with the said
number doubled.

8.1 4-tuple of type signatures
The generic show is like a fully-generic “fold” operation (reducing
a big nested value to a single string), on the other hand, double is
like a fully-generic “map” operation. It traverses all nested values
and maps the doubling operation across all embedded natural num-
bers encountered. This first iteration of the double function is type-
preserving. To illustrate this, recall how we defined show with the
4-tuple of functions (showType, show, showDesc, showd).
Similarly, we will now define double with the 4-tuple of functions
(doubleType, double, doubleDesc, doubled). Below are
the type signatures for the 4 mutually defined functions comprising
this 4-tuple. Notice that in each of them the type of the output (after
being doubled) is the same as the type of the input. Compare this
with the types of show 4-tuple, where each function of the 4-tuple
returns a constant string after traversal in each of the 4 functions.

doubleType : (` : N) ! J suc ` | ‘Type ‘! ‘Type K
doubleDesc : (` : N) ! J ` | ‘Desc ‘! ‘Desc K
double : (` : N) ! J suc ` |
‘P ‘Type (l A ! ‘P ‘J A K (l a ! ‘J A K)) K

doubled : (` : N) ! J suc ` |
‘P ‘J ‘Desc K (l D ! ‘P ‘Type (l X !
‘J ‘J D Kd X K ‘! ‘J ‘J D Kd X K)) K

The next step in this logical progression, is for the return type
after traversal, to be a function of the input type. We take this step
in the next section, but first explore the simpler type-preserving
version to make a few important points.

8.2 Doubling case
When a natural number value is encountered, we double it. This
case is the whole point of our generic function.

doubleType ` ‘N = ‘N
double ` ‘N n = n + n

Note that we have chosen to double natural numbers described
by the base type ‘N in this series of examples. We could have
altered any embedded Desc-encoded datatype to illustrate “map-
ping” traversals, but we use a base type because the examples are
easier to read (as they avoid the messiness of encoded values).
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8.3 homomorphic cases
Most of the cases of our 4 muturally defined functions are structure
preserving homomorphisms. They simply recursively thread the
doubling operation through their arguments (or child nodes). In
particular, non-dependent pairs and subcomponents of previously
defined types are homomorphisms.

doubleDesc ` (D ‘⇥ E) =
doubleDesc ` D ‘⇥ doubleDesc ` E

doubled ` (D ‘⇥ E) X (x , y) =
doubled ` D X x , doubled ` E X y

doubleDesc (suc `) ‘[ A ] = ‘[ doubleType ` A ]
doubled (suc `) ‘[ A ] X x = double ` A x

Below is an example application of our double function. Notice
how it deeply-crawls the structure of values, and leaves non-natural
number values unmodified.

Eg1 : (` : N) ! J 2 + ` | ‘Type K
Eg1 ` = ‘m (‘[ ‘N ] ‘⇥ ‘[ ‘Bool ] ‘⇥ ‘[ ‘N ])

eg1 : (` : N) ! J suc ` | Eg1 ` K
eg1 ` = con (1 , true , 3)

eg1
0 : (` : N) ! J suc ` | Eg1 ` K

eg1
0 ` = double (suc `) (Eg1 `) (eg1 `)

test-eg1 : (` : N) ! eg1
0 ` ⌘ con (2 , true , 6)

test-eg1 ` = refl

8.4 Problems with the dependent cases
We quickly run into trouble when defining the traversal for depen-
dently typed functions (‘P) or pairs (‘P). Consider the example
dependent pair type below.

isOne : (` : N) ! J suc ` | ‘N ‘! ‘Bool K
isOne ` (suc zero) = true
isOne ` _ = false

Eg2 : (` : N) ! J 2 + ` | ‘Type K
Eg2 ` = ‘S ‘N (l b ! if isOne ` b then ‘N else ‘?)

eg2 : (` : N) ! J suc ` | Eg2 ` K
eg2 ` = 1 , 3

The affect of doubling the first component of the pair changes
the type of the second component. Our traversal is no longer type
preserving! For example, the type of the second component must
be changed to a ? value if the first component is doubled.

In this preliminary exploration, we take the easy way out, we
don’t recurse down the first component of dependent values, but
in the next section we do something more interesting for such
dependent cases.

doubleType ` (‘S A B) =
‘S A (l a ! doubleType ` (B a))

double ` (‘S A B) (a , b) = a , double ` (B a) b

doubleType ` (‘P A B) =
‘P A (l a ! doubleType ` (B a))

double ` (‘P A B) f = l a ! double ` (B a) (f a)

Here we push the doubling operation through the second com-
ponent, but leave the first component untraversed. In contrast recall
that the show function does not traverse the second component of

dependent cases, because those are higher-order. For similar rea-
sons double does not recurse through the first component of de-
pendent cases, because that would change the type of the second
component.

9. Generic definition of �ouble
The fully-generic double function of the previous section is a nice
example, but it’s a shame that it does not recurse into every possible
value. In this section we define another doubling function, called
double. Whereas double is type-perserving, double changes its
type! Now that we can change both the type and the value of a value
being doubled, we can do more interesting things for the dependent
cases.

9.1 4-tuple of type signatures
Compared to the 4-tuple of type signatures used to defined double,
the double 4-tuple takes advantage of dependent types. The
doubleType is used by double when doubling values which are
types (these are mutually defined functions, after all). However,
now when double is applied to any particular value, the type of
the returned value must is computed by doubleType. Thus, if
doubleType is not defined to be the identity function, then the
type of doubled values may be different from the type of the argu-
ment to the function.

doubleType : (` : N) ! J suc ` | ‘Type ‘! ‘Type K
doubleDesc : (` : N) ! J ` | ‘Desc ‘! ‘Desc K
double : (` : N) ! J suc ` |
‘P ‘Type (l A ! ‘J A K ‘! ‘J doubleType ` A K) K

doubled : (` : N) ! J suc ` |
‘P ‘J ‘Desc K (l D ! ‘P ‘Type (l X !
‘J ‘J D Kd X K ‘!
‘J ‘J doubleDesc ` D Kd (doubleType ` X) K)) K

9.2 Previously given cases
Our new double only behaves differently from double in the
dependent cases. This is good, as it means that for most values
doubling them will still preserve types. Now let’s find out what we
do in the dependent cases.

9.3 Dependent pair cases
When doubling dependent pairs, we now add an extra argument for
the doubled first component, changing a tuple into a triple. Thus
we keep around the old first component so that the type of the
second old component can depend on the same old value. In order
to make this be type correct, doubleType must add an extra ‘S to
also change the type from classifying a tuple to classifying a triple.

doubleType ` (‘S A B) =
‘S A (l a ! ‘S (doubleType ` A) (l _ !
doubleType ` (B a)))

double ` (‘S A B) (a , b) =
a , double ` A a , double ` (B a)b

Below we see this action. Notice that the type of the freshly
computed resulting triple is itself freshly computed. This once
again highlights the type-enforced correspondence between doubleType
and double.

Eg2
0 : (` : N) ! J 2 + ` | ‘Type K

Eg2
0 ` = doubleType (suc `) (Eg2 `)

eg2
0 : (` : N) ! J suc ` | Eg2

0 ` K
eg2

0 ` = double (suc `) (Eg2 `) (eg2 `)
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test-eg2
0 : (` : N) ! eg2

0 ` ⌘ (1 , 2 , 6)
test-eg2

0 ` = refl

9.4 Dependent function cases
Dependent function values are abstractions by their very nature.
Thus, we cannot use the same trick of “keeping around” the old
domain value, because we do not know what it is yet. This time we
modify the type of the resulting value by requiring an extra function
parameter to be supplied. This function parameter is a conversion
function that transforms values from the newly doubled domain to
the old undoubled domain.

doubleType ` (‘P A B) =
‘P (doubleType ` A ‘! A) (l f !
‘P (doubleType ` A) (l a !
doubleType ` (B (f a))))

double ` (‘P A B) f =
l g a ! double ` (B (g a)) (f (g a))

Recall that with arbitrarily complex dependent types, it may not
always be possible to convert values of old types to values of new
types (the new type may be ‘?). Luckily, we parameterize by the
conversion function, and the user can pass it in when it is possible
to define. If the ‘P being mapped over does not dependently use
its domain argument, then the required conversion function will
merely be the identity function.

10. Generic function interface
We have now seen three examples of fully generic functions: show
from Section 4, double from Section 8, and double from Section
9. All of these fully generic functions were defined in a common
way, which is formally captured in this section by dependent record
types.

10.1 Generic
A fully-generic function is defined as a 4-tuple of functions, han-
dling types, descriptions, values, and described values. Below is the
more general version of the dependent records we present. This de-
pendent record is called Generic. Notice that it has eight fields,
rather than four. The extra fields are the type signatures of each of
the four generic functions. Our convention is to capitalize the field
names standing for the type signatures of each generic function that
comprises the 4-tuple.

record Generic (` : N) : Set where
field
GType : J 2 + ` | ‘Type ‘! ‘Type K
gType : J 1 + ` | ‘P ‘Type (l A ! GType ‘J A K) K

GDesc : J 1 + ` | ‘J ‘Desc K ‘! ‘Type K
gDesc : J 0 + ` | ‘P ‘Desc (l D ! GDesc D) K

GVal : J 2 + ` |
‘P ‘Type (l A ! ‘J A K ‘! ‘Type) K

gVal : J 1 + ` | ‘P ‘Type (l A !
‘P ‘J A K (l a ! GVal ‘J A K a)) K

GVald : J 1 + ` |
‘P ‘J ‘Desc K (l D ! ‘P ‘Type (l X !
‘J ‘J D Kd X K ‘! ‘Type)) K

gVald : J 1 + ` |
‘P ‘J ‘Desc K (l D ! ‘P ‘Type (l X !
‘P ‘J ‘J D Kd X K (l x ! ‘J GVald D X x K))) K

Each of our fully-generic 4-tuples can be represented as a value
of this dependent record. All functions in the 4-tuple used to define
show are typed as strings.

gshow : (` : N) ! Generic `
gshow ` = record {

GType = l A ! ‘String
; gType = showType `
; GDesc = l D ! ‘String
; gDesc = showDesc `
; GVal = l A a ! ‘String
; gVal = show `
; GVald = l D X x ! ‘String
; gVald = showd `
}

In contrast, each of the 4-tuple functions that are used to define
double are typed differently. The functions to double types and de-
scriptions return types and descriptions respectively. The functions
to double values and described values preserve the type of the value
being doubled.

gdouble : (` : N) ! Generic `
gdouble ` = record {

GType = l A ! ‘Type
; gType = doubleType `
; GDesc = l D ! ‘Desc
; gDesc = doubleDesc `
; GVal = l A a ! A
; gVal = double `
; GVald = l D X x ! ‘J D Kd X
; gVald = doubled `
}

Once again, each 4-tuple function of double is typed differ-
ently. The difference is that the functions to double values and de-
scribed values are dependently typed by the functions to double
types and descriptions respectively.

gdouble : (` : N) ! Generic `
gdouble ` = record {

GType = l A ! ‘Type
; gType = doubleType `
; GDesc = l D ! ‘Desc
; gDesc = doubleDesc `
; GVal = l A a ! doubleType (suc `) A
; gVal = double `
; GVald = l D X x !

‘J doubleDesc ` D Kd (doubleType ` X)
; gVald = doubled `
}

10.2 Generic�
Our alternative generic interface record is GenericD. It is more
specific than Generic, and its instances include double and
double, but not show. The GenericD interface enforces the afore-
mentioned dependencies between the generic functions operating
on types and the generic functions operating on values of said
types. This record only has four fields, because the types of each
transformation function cannot be altered. Whereas showType in
Generic can return a ‘String, in GenericD the doubleType and
doubleType functions are assumed to return types.

record GenericD (` : N) : Set where
field
gType : J suc ` | ‘Type ‘! ‘Type K
gDesc : J ` | ‘Desc ‘! ‘Desc K
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gVal : J suc ` |
‘P ‘Type (l A ! ‘J A K ‘! ‘J gType A K) K

gVald : J suc ` |
‘P ‘J ‘Desc K (l D ! ‘P ‘Type (l X !
‘J ‘J D Kd X K ‘! ‘J ‘J gDesc D Kd (gType X) K)) K

We previously referred to the double function as being type
preserving. This property is witnessed in the GenericD record
instance below, where the type-changing function for double is
the identity function. In contrast, the type-changing function for
double is doubleType.

gdoubleD : (` : N) ! GenericD `
gdoubleD ` = record {

gType = id
; gDesc = id
; gVal = double `
; gVald = doubled `
}

gdoubleD : (` : N) ! GenericD `
gdoubleD ` = record {

gType = doubleType `
; gDesc = doubleDesc `
; gVal = double `
; gVald = doubled `
}

Finally we would like to mention that one might imagine other
additional interfaces. For example, one in which the newly com-
puted type is not only dependent on the old type, but also on the
old value.

11. Conclusion
We have demonstrated that a large and very expressive universe can
be constructed for a dependently typed language with a predicative
hierarchy of universes, that also supports user-extensible datatypes.
We described the Universe in several stages, starting very sim-
ply and informally, building in several steps, to a completely for-
mal, mechanized, presentation in the dependently typed language
AGDA [Norell 2007].

Variations of the ideas in this paper were published elsewhere,
but here we tie them all together into a coherent whole that is signif-
icantly more useful than any of its parts. The glue that unifies these
ideas is to parameterize data structures encoding types by a Uni-
verse. This supports the predicative hierarchy, and the Universe’s
meaning function can be used to internalize the types of generic
functions.
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