
Hereditary Substitution
by Canonical Evaluation (SbE)

[Technical Report]

Larry Diehl and Tim Sheard

Portland State University
{ldiehl,sheard}@cs.pdx.edu

Abstract. Hereditary substitution is a version of substitution that works
with canonical terms. Substituting into a canonical term may temporar-
ily create a β-redex. Hereditary substitution immediately evaluates the
redex to once again obtain a canonical term. Termination of hereditary
substitution has primarily been studied proof-theoretically. However, for-
mal proof-theoretic termination arguments of hereditary substitution
have trouble scaling to systems with inductive types, such as Gödel’s
System T.
We present a model-theoretic termination argument of hereditary substi-
tution that scales to systems with inductive types. Specifically, we adapt
some of the techniques used in formalizing Normalization by Evaluation
(NbE). Much of the existing NbE machinery can be reused. In some
sense, we merely point out a beautiful coincidence: Canonical evaluation
(evaluation from NbE, but defined on canonical terms) is a terminating
model-theoretic definition of hereditary substitution. All of our work has
been verified by Agda. 1

Keywords: Hereditary substitution; normalization by evaluation; ter-
mination; type theory; formalization.

1 Introduction

Normalization by Evaluation (NbE) [4,6,7] is a model-theoretic technique for
defining the semantics of a λ-calculus. For example, normalization for a total
λ-calculus with inductive types (such as Gödel’s System T [11]) can be defined
by first evaluating a syntactic expression (possibly containing β-redexes) to a se-
mantic value of a Kripke model [15,19], and then reifying the result to a syntactic
value (not containing any β-redexes).

∀(e : A)

norm
%%

evalE // J A K

reify

��
∃(v : A)

1 The accompanying source code can be found at
https://github.com/larrytheliquid/sbe

2 Larry Diehl and Tim Sheard

NbE is especially convenient for formalizing the semantics of total λ-calculi in
dependently typed languages (such as Coq [25], Agda [22], or Idris [5]), because
the proof of termination of the semantics is implicit in its definition. In other
words, normalization can be defined as a total function within a language based
on Martin-Löf Type Theory [17,18,21]. In contrast, formalizing the semantics of
expressions as a relation (e.g. a small or big-step relation), or as a coinductive
function [3], requires the additional overhead of supplying an explicit termination
proof a posteriori using techniques such as logical relations [23].

In a standard type theory expressions are emphasized and their semantics is
defined directly. Alternatively, a canonical type theory emphasizes values (canon-
ical terms) and defines the semantics of expressions in terms of hereditary sub-
stitution of values (for example, see Appendix D). Values are not closed under
ordinary substitution, because a substitution can introduce a β-redex. Heredi-
tary substitution fixes this problem by reducing whenever a β-redex is created
as the result of substitution. But, it is not easy to show that traditional proof-
theoretic definitions of hereditary substitution terminate (for a suitably complex
λ-calculus, see Section 1.1 below) in dependently typed languages.

Our contribution is adapting NbE to canonical terms, giving us a model-
theoretic definition of hereditary substitution. We call this technique “Hereditary
Substitution by Canonical Evaluation (SbE)”. Defining SbE requires us to intro-
duce novel definitions, but we also get to reuse the model from NbE, as well as
some of its definitions. SbE is defined by canonically evaluating a syntactic value
to a semantic value (of a Kripke model), and then reifying back to a syntactic
value.

∀(v : A), σ

hsub &&

evalV // J A K

reify

��
∃(v′ : A)

SbE is a functional definition of hereditary substitution that contains an in-
trinsic termination proof, just like the functional definition of normalization that
you get from NbE. Thus, SbE is amenable to formalization, allowing canonical
type theory for λ-calculi with inductive types to be defined in dependent type
theory. For simplicity, we use Gödel’s System T for our examples in this paper,
but SbE scales to systems with parameterized inductive types (such as lists or
trees) for the same reasons that NbE does.

1.1 Proof Theoretic Semantics

Hereditary substitution has historically been studied in the context of proof-
theoretic semantics. A proof-theoretic semantics takes syntactic inputs directly
to syntactic outputs, without going through an intermediate semantic model.
Additionally, a proof-theoretic termination proof (which can be implicit in the
semantics or given explicitly) is completely syntactic (i.e. it does not use a logical

Hereditary Substitution by Canonical Evaluation 3

relation). Formalizing this approach in dependently typed languages has been
limited to simple calculi. For example, Keller and Altenkirch [14] show how to
formalize the semantics of the STLC in Agda using syntactic hereditary substi-
tution. The termination of the hereditary substitution function is witnessed by
lexicographic induction on terms and types, but this approach does not scale to
λ-calculi with inductive types.

An advantage of the syntactic approach to hereditary substitution is that it
demands less from the metalanguage than a semantic approach (i.e. the meta-
language function space is not needed to construct a model). A disadvantage of
the syntactic approach is that exposing the lexicographic termination argument
requires changing the structure of values, i.e. requiring values to be in spine form.

1.2 Outline

After a brief discussion about our notation, the rest of the paper is structured
as follows:

– Section 2 We review the model and theorems used by NbE, and explain
the definition of NbE (and its implicit termination proof). Then, we present
the novel definition of SbE, in which we reuse the model and some theorems
from NbE. Finally, we compare and contrast SbE with NbE.

– Section 3 We present the novel definition of canonical evaluation. In NbE,
evaluation takes a syntactic expression and a semantic environment to a
semantic value. Canonical evaluation is like evaluation, except it operates on
values instead of expressions. In SbE, canonical evaluation takes a syntactic
value and a semantic environment to a semantic value.

– Section 4 We present the novel definition of environment reflection. Because
hereditary substitution already has a syntactic environment parameter (the
“substitution” to be applied to the variables of the syntactic value that we are
hereditarily substituting into), we must reflect that syntactic environment as
a semantic environment so that we may use it as an argument of canonical
evaluation.

– Section 5 We discuss related and future work. In particular, we compare and
contrast proof-theoretic and model-theoretic hereditary substitution in more
detail. We also point out how SbE (model-theoretic hereditary substitution)
can be adapted from NbE to calculi with inductive types. In contrast, adapt-
ing proof-theoretic hereditary substitution to calculi with inductive types has
been problematic.

1.3 Notation

We define types and contexts for Gödel’s System T using a standard BNF gram-
mar in Figure 1. However, we use intrinsically typed terms instead of defining a
grammar for terms and an extrinsic typing relation. Below is an example of the
standard extrinsic typing of expressions.

4 Larry Diehl and Tim Sheard

A,B,C ::= N | A ⊃ B
Γ,∆,Ξ, Φ ::= ∅ | Γ,A

Fig. 1: BNF grammar for types and contexts. Expressions, values, and neutrals
are not represented by a BNF grammar. Instead, they are defined by an intrinsi-
cally typed representation, rather than a BNF grammar and an extrinsic typing
relation over said grammar.

e ::= ... | zero | suc n | ...

Γ `E n : N
Γ `E suc n : N

N-I2

Instead, we use the proof terms of our typing relation as intrinsically typed
terms (combining both definitions above into the single definition below).

(n : Γ `E N)

Γ `E N
suc n

We label each premise with a variable to the left of a colon, and the name of
the typing rule shows how to use it as a proof term by applying it to the premise
labels. In other words, the labels represent the derivations of the premises.

The letter appearing as the superscript to the turnstyle is part of the name
of each intrinsic typing judgment. For example, `E types expressions in Figure
3, `V types values in Figure 4, and `N types neutrals in Figure 5.

Finally, we have taken care to ensure that all of our constructions are easily
formalizable. For this reason, we use De Bruijn variables [8]. For example, our
typing rule for functions does not explicitly bind its variable.

(b : Γ,A `E B)

Γ `E A ⊃ B
λb

Additionally, proof that a (De Bruijn) variable of a particular type exists in
the context is given by the judgment `R in Figure 2. Mentioning a variable in a
term thus requires evidence that the variable judgment is satisfied.

(i : Γ `R A)

Γ `E A
var i

Hereditary Substitution by Canonical Evaluation 5

Γ,A `R A
here

(i : Γ `R A)

Γ,B `R A
there i

Fig. 2: Intrinsic typing of De Bruijn variables. The intrinsically typed variables
act as proofs that the type parameter of the judgment appears in the context
parameter of the judgment.

Γ `E N
zero

(n : Γ `E N)

Γ `E N
suc n

(b : Γ,A `E B)

Γ `E A ⊃ B
λb

(i : Γ `R A)

Γ `E A
var i

(f : Γ `E A ⊃ B) (a : Γ `E A)

Γ `E B
f · a

(n : Γ `E N) (cz : Γ `E C) (cs : Γ `E C ⊃ C)

Γ `E C
rec n cz cs

Fig. 3: Intrinsic typing of expressions for Gödel’s System T. The intrinsically
typed expressions act as proofs that the expression represented by the proof
term is well typed.

2 Overview of NbE and SbE

First we review why the proofs of termination of naive definitions of normaliza-
tion and hereditary substitution fail, and then we provide a high-level overview
of theorems and definitions necessary to define NbE and SbE (which intrinsically
terminate, unlike the naive definitions). Finally, we discuss the similarities and
differences between NbE and SbE. Henceforth, the development will proceed in
a top-down manner. Each theorem comes in four parts:

1. The statement of the theorem.

2. A table of lemmas that the theorem depends on in its proof, and references
to where proofs of the lemmas can be found.

3. A high-level discussion of the theorem and its proof.

4. The low-level details of the proof, sometimes interspersed with high-level
explanations of how it works.

Preexisting proofs that we reuse from the NbE literature can be found in the
appendices, while novel proofs appear in the body of the paper.

6 Larry Diehl and Tim Sheard

Γ `V N
zero

(n : Γ `V N)

Γ `V N
suc n

(b : Γ,A `V B)

Γ `V A ⊃ B
λb

(a : Γ `N A)

Γ `V A
neut a

Fig. 4: Intrinsic typing of values (canonical terms) for Gödel’s System T. The
intrinsically typed values act as proofs that the value represented by the proof
term is well typed. The grammar of values also includes all neutral terms (see
Figure 5).

2.1 Termination Issues with Naive Definitions

When defining normalization and hereditary substitution, the main problem
preventing an obvious termination argument by structural induction is the lack
of an inductive hypothesis in the function application case.

Naive Normalization Consider the application case in the definition of strong
normalization below, given as a big-step binary relation between expressions.
Below “here” refers to De Bruijn index zero from Figure 2.

f ⇓ λb a ⇓ a′ [a′/here]b ⇓ b′

f · a ⇓ b′

After evaluating the function to a lambda, we need to substitute the argument
into the lambda body. This may introduce new β-redexes, so we must evaluate
again but there is no obvious termination measure to justify this. Above, we
have already appealed to the inductive hypothesis for the two subterms f (the
function) and a (its argument), and there is no inductive hypothesis for the
function λ-body b.

Naive Hereditary Substitution Consider the application case in the definition
of hereditary substitution below, given as a ternary relation between an input
value, a mapping from variables to values (σ), and a resulting value. Note that
we actually have two mutually defined relations, one for substituting into a value
and producing a new value ([σ]v =V v′), and another for substituting into neutral
but also producing a value ([σ]n =N v).

[σ]f =N λb [σ]a =V a′ [σ, a′]b =V b′

[σ](f · a) =N b′

This relation is not obviously terminating for the same reason as normal-
ization. We have inductive hypotheses for substituting into the function and
substituting into the argument, but there is no inductive hypothesis for substi-
tuting into the λ-body.

Hereditary Substitution by Canonical Evaluation 7

(i : Γ `R A)

Γ `N A
var i

(f : Γ `N A ⊃ B) (a : Γ `V A)

Γ `N B
f · a

(n : Γ `N N) (cz : Γ `V C) (cs : Γ `V C ⊃ C)

Γ `N C
rec n cz cs

Fig. 5: Intrinsic typing of neutrals (variables and elimination rules) for Gödel’s
System T. The intrinsically typed neutrals act as proofs that the neutral repre-
sented by the proof term is well typed.

2.2 The Model

The naive definition of normalization is defined in one phase, going directly
from syntactic expressions to syntactic values. In contrast, NbE is defined in two
phases. The first (called “evaluation”) phase goes from syntactic expressions to
semantic values (of a Kripke model). The second phase (called “reification”) goes
from semantic values to syntactic values. In the naive definition, normalization
(producing a syntactic value) is a large definition given by case analysis over all
syntactic forms of expressions. In NbE, evaluation (producing a semantic value)
is a large definition given by case analysis over all syntactic forms of expressions,
while reification is a small definition given only by case analysis over the types
of semantic values.

NbE breaks up normalization into two phases (evaluation into the model and
reification back out of it) so that both phases can be defined in a structurally
terminating way. There are no termination issues when defining reification (the
smaller phase). However, evaluation (the larger phase) must be defined by case
analysis over all expressions. Recall that the problematic case in the definition of
normalization is function application. The definition of the model below makes
it possible to define the function application case of evaluation in a structurally
terminating way.

Definition 1 (Semantic Values).
The model of values J Γ ` A K denotes a set (a type in the metalanguage), and
it is defined inductively on the structure of (object language) types (A). We refer
to any member of the model of values as a “semantic value”.

Case (Natural numbers).

J Γ ` N K , Γ `V N

Syntactic natural number values are also semantic natural numbers values.

8 Larry Diehl and Tim Sheard

Case (Functions).

J Γ ` A ⊃ B K , ∀∆. J Γ,∆ ` A K→ J Γ,∆ ` B K

The model of functions is a function in the metalanguage. The semantic
function takes a weakened semantic value (whose type is the domain of the func-
tion) as an argument, and produces a weakened semantic value (whose type is
the codomain of the function). Both the input and output values of the model
function are weakened by some arbitrary context ∆, which can be empty. 2

So how does this model help us to define the application case of evaluation?
The result of evaluation (rather than normalization) is a semantic value (rather
than a syntactic value). Thus, evaluating the function produces a semantic func-
tion (a function in the metalanguage), which we can apply to the semantic value
produced by evaluating the argument (in this case the weakening ∆ is merely
the empty context). Hence, we can define the application case of evaluation in
an structurally terminating way since it only needs to appeal to the inductive
hypotheses for the function and its argument. The inductive hypothesis for the
function produces a metalanguage function that we can apply, rather than a
syntactic λ and a body for which we would be missing an inductive hypothesis.

Given that evaluation must map syntactic expressions to semantic values,
what should it do when it encounters a variable? We can make evaluation take
an additional argument, called the “semantic environment”, mapping variables
to semantic values. More specifically, the semantic environment maps all types
(where each type represents a variable) in some initial context Γ to semantic
values in some terminal context ∆. Because the environment values are scoped by
∆, evaluation works on open terms, hence NbE can define strong normalization.

Definition 2 (Semantic Environments).
The model of environments J ∆ ` Γ K is defined inductively on the structure of
the second argument (Γ). We refer to any member of the model of environments
as a “semantic environment”.

Case (Empty context).
J ∆ ` ∅ K , >

The empty context is trivially inhabited in the environment model.

Case (Context extension).

J ∆ ` Γ,A K , J ∆ ` Γ K× J ∆ ` A K

The environment model of a context extension consists of two parts, given
as a pair type. The first part is a semantic environment for the context being
extended (Γ). The second part is a semantic value in the terminal context (∆),
whose type is the type of the context extension (A).
2 In a true Kripke model the function case includes an accessibility relation between

contexts (or “worlds”), allowing the semantic function domain and codomain to be
scoped under an arbitrary context ∆. Merely out of preference, our “Kripke-like”
model restricts the domain and codomain to be a weakening (Γ,∆) of the original
context (Γ).

Hereditary Substitution by Canonical Evaluation 9

2.3 Normalization by Evaluation

So far we have seen the model of values and environments, and the intuition
behind the model enabling a terminating definition of evaluation. Now let’s take
a closer look at how exactly to define normalization in terms of evaluation. What
theorems 3 do we need, and how do we instantiate these theorems in the proof
of normalization?

Theorem 1 (Normalization by Evaluation).

nbe : Γ `E A→ Γ `V A

Appendix A Theorem 5 evalE Γ `E A→ J ∆ ` Γ K→ J ∆ ` A K

Appendix B Theorem 6 reify J Γ ` A K→ Γ `V A

Appendix C Theorem 7 reflectC ∀Γ. J Γ ` Γ K

The high-level plan of NbE is to define normalization as the composition of
evaluation (evalE) of a syntactic expression to a semantic value, and reification
(reify) back to a syntactic value. Normalization takes a syntactic expression to
a syntactic value, while evaluation takes a syntactic expression and a seman-
tic environment to a semantic value. So what should we use for the semantic
environment argument when defining normalization in terms of evaluation? We
can reflect any context (Γ) as a semantic environment (reflectC). Specifically,
a context is reflected as the identity semantic environment, mapping syntactic
variables to themselves, but as semantic values.

Proof.

e : Γ `E A (assumption)

σ : J Γ ` Γ K (reflectC Γ)

v : J Γ ` A K (evalE e σ)

v′ : Γ `V A (reify v)

The diagram of NbE in the introduction left out some details, as it was only
meant to convey the intuition behind NbE. However, we can fill in the details
to arrive at the alternative pictorial proof below.

(e : Γ `E A)

nbe e))

evalE e (reflectC Γ)

// (v : J Γ ` A K)

reify v

��
Γ `V A

ut
3 Because the “definition” of normalization contains an intrinsic termination proof, we

refer to normalization, evaluation, and related “definitions” as theorems and lemmas.

10 Larry Diehl and Tim Sheard

2.4 Hereditary Substitution by Canonical Evaluation

How is the type of hereditary substitution different from that of normalization?
First, we are substituting into a value rather than normalizing an expression.
Second, hereditary substitution also takes a syntactic environment, a mapping
of variables to syntactic values, as an additional argument. 4

Definition 3 (Syntactic Environments).
Syntactic environments ∆ `V Γ are defined as a cartesian product, exactly like
semantic environments (Definition 2, J ∆ ` Γ K), except they contain syntactic
values instead of semantic values.

Theorem 2 (Hereditary Substitution by Canonical Evaluation).

sbe : Γ `V A→ ∆ `V Γ → ∆ `V A

Section 3 Theorem 3 evalV Γ `V A→ J ∆ ` Γ K→ J ∆ ` A K

Appendix B Theorem 6 reify J Γ ` A K→ Γ `V A

Section 4 Theorem 4 reflectS ∀∆. ∆ `V Γ → J ∆ ` Γ K

Above are the theorems we need for SbE. In particular, notice that we get to
reuse reify from NbE. The high-level plan of SbE is to define hereditary substi-
tution as the composition of canonical evaluation (evalV) of a syntactic value to
a semantic value, and reification (reify) back to a syntactic value. What exactly
is canonical evaluation? Recall that evaluation of expressions turns syntactic ex-
pressions into semantic values, reducing β-redexes and replacing variables with
their definition in the semantic environment (σ) along the way. On the other
hand, canonical evaluation takes a syntactic value and a semantic environment
to a semantic value. It will not come across β-redexes in the input syntactic
value, but replacing variables with semantic values (from σ) may introduce β-
redexes that need to be immediately reduced. Finally, the syntactic environment
argument (σ) of SbE is reflected (reflectS) as a semantic environment, and is used
as the semantic environment argument of canonical evaluation.

Proof.

v : Γ `V A (assumption)

σ : ∆ `V Γ (assumption)

σ′ : J ∆ ` Γ K (reflectS σ)

v′ : J ∆ ` A K (evalV v σ′)

v′′ : ∆ `V A (reify A v′)

4 What we call a “syntactic environment” is normally called a “substitution”. Because
we refer so much to the operation of hereditary substitution, it is less ambiguous to
refer to its “substitution” argument as a “syntactic environment”.

Hereditary Substitution by Canonical Evaluation 11

Once again, we can add detail to the commutative diagram of SbE in the
introduction to arrive at the alternative pictorial proof below.

(v : Γ `V A) (σ : ∆ `V Γ)

sbe v σ
**

evalV v (reflectS σ)

// (v′ : J ∆ ` A K)

reify v′

��
∆ `V A

ut

2.5 NbE versus SbE

In the world of expressions, evaluation takes an additional argument (the seman-
tic environment) compared to normalization, which only takes the expression to
reduce. But, in the world of values hereditary substitution and canonical evalua-
tion both take a value, an environment, and produce a value. The only difference
is that canonical evaluation takes a semantic environment and produces a seman-
tic value. In other words, canonical evaluation is a model-theoretic hereditary
substitution, compared to the typical proof-theoretic hereditary substitution.
What a beautiful coincidence!

A consequence of this is that normalization must invent a semantic envi-
ronment to pass to evaluation, because it does not already have a syntactic
environment argument to reflect. Because normalization does not change the
value of free variables, the identity semantic environment can be used by re-
flecting the context (reflectC). In contrast, hereditary substitution already has a
syntactic environment (that is used to look up the value of any free variables), so
canonical evaluation takes the reflection (reflectS) of the syntactic environment
as its semantic environment argument. More generally, an important difference
between normalization and hereditary substitution is that the former preserves
the type (A) and context (Γ) of its input, while the latter only preserves its type
(the context changes to ∆).

Although there is a more direct correspondence between SbE and canonical
evaluation (than there is between NbE and evaluation), there is nothing prevent-
ing us from defining a function on expressions that normalizes β-redexes, and
simultaneously performs hereditary substitutions from an environment mapping
variables to expressions. This normalization plus hereditary substitution func-
tion (nsbe) would take an extra syntactic expression environment argument,
creating a correspondence with evaluation that is just as direct as the one that
SbE enjoys.

nsbe : Γ `E A→ ∆ `E Γ → ∆ `V A

12 Larry Diehl and Tim Sheard

3 Canonical Evaluation

Canonical evaluation (evalV) is the primary definition in SbE, taking a syntactic
value and a semantic environment to a semantic value. It is analogous to evalua-
tion (evalE) in NbE. In fact canonical evaluation is defined exactly the same way
that evaluation is, except by case analysis over values instead of expressions!

Because the grammar of values is mutually defined with neutrals, canonical
evaluation of values (evalV) is mutually defined with canonical evaluation of
neutrals (evalN). Recall that values consist of axioms and inference rules for all
constructors, plus an inference rule for injecting neutrals into values. A neutral is
a variable, or sequence of eliminations (i.e. applications or primitive recursions)
that begins with the elimination of a variable.

Expressions and values are quite different, as the former may contain β-
redexes. However, if you compare canonical evaluation (Theorem 3 & Lemma
1) with evaluation (Theorem 5 in Appendix A) you will notice that they are
identical, modulo the former being defined over a split grammar. Why is that?
An expression may already be a syntactic β-redex, while a syntactic value will
never be a syntactic β-redex. But, both an expression and a value may become
a semantic β-redex (a β-redex of the metalanguage) after replacing syntactic
variables with values from the semantic environment.

Essentially, evaluation and canonical evaluation are similar because they op-
erate on variables the same way, replacing them with semantic values from the
semantic environment. In contrast, normalization leaves variables unchanged,
while hereditary substitution replaces variables with syntactic values from the
syntactic environment.

Theorem 3 (Canonical Evaluation of Values).

evalV : Γ `V A→ J ∆ ` Γ K→ J ∆ ` A K

Section 3 Lemma 1 evalN Γ `N A→ J ∆ ` Γ K→ J ∆ ` A K

Appendix C Lemma 4 monoS ∀∆. J Ξ ` Γ K→ J Ξ,∆ ` Γ K

Canonical evaluation (evalV) is a type-preserving translation. It takes a syn-
tactic value in some initial context (Γ `V A) and a semantic environment in
some terminal context (J ∆ ` Γ K), and produces a semantic value in the ter-
minal context (J ∆ ` A K). The semantic environment has a semantic value for
every type in the initial context, each of which must be scoped in the terminal
context.

Proof. By induction on the value Γ `V A.

Case (Zero). The zero case is immediate.

n : ∆ `V N (zero)

n : J ∆ ` N K (definition)

Hereditary Substitution by Canonical Evaluation 13

Case (Successor). The successor case is a congruence.

n : Γ `V N (assumption)

σ : J ∆ ` Γ K (assumption)

n′ : J ∆ ` N K (i.h. evalV n σ)

n′ : ∆ `V N (definition)

m : ∆ `V N (suc n′)

m : J ∆ ` N K (definition)

Case (Function). When canonically evaluating a function (a λ term), the
return type is a model function (a metalanguage function). We get two standard
parameters from the theorem (b and σ), but because we return a metalanguage
function we also get two additional parameters from its domain (Ξ and a). The
Ξ parameter is a context to weaken the result with, and the a parameter is
a semantic value that has been weakened by Ξ. Review the function case of
J Γ ` A ⊃ B K in Definition 1 to see where the two additional parameters come
from.

We would like to produce a result by canonically evaluating the λ-body b,
using the semantic environment σ extended by the extra argument a that we
received from the model. However, all of the semantic values in the semantic
environment are scoped under ∆, while semantic value a is scoped under ∆,Ξ.
Thus, we must use the monoS lemma from Appendix C to transform σ. The
reader can recognize monoS as a form of weakening (we are weakening ∆ by Ξ
above) lifted to semantic environments.

b : Γ,A `V B (assumption)

σ : J ∆ ` Γ K (assumption)

Ξ (assumption)

a : J∆,Ξ ` AK (assumption)

σ′ : J ∆,Ξ ` Γ K (monoS Ξ σ)

b′ : J ∆ ` B K (i.h. evalV b (σ′, a))

Case (Neutral). Canonical evaluation of neutrals is delegated to a mutually
defined theorem (evalN).

a : Γ `N A (assumption)

σ : J ∆ ` Γ K (assumption)

a′ : J ∆ ` A K (i.h. evalN a σ)

ut

14 Larry Diehl and Tim Sheard

Lemma 1 (Canonical Evaluation of Neutrals).

evalN : Γ `N A→ J ∆ ` Γ K→ J ∆ ` A K

Section 3 Theorem 3 evalV Γ `V A→ J ∆ ` Γ K→ J ∆ ` A K

Appendix A Lemma 2 JrecK J Γ ` C K→ J Γ ` C ⊃ C K→ J Γ ` N K→ J Γ ` C K

Canonical evaluation of neutrals (evalN) handles the canonical evaluation
of variables and eliminations, and is used as a lemma in the mutually defined
canonical evaluation of values (evalV).

Proof. By induction on the neutral Γ `N A.

Case (Variable). Canonically evaluate a variable by looking up its corre-
sponding semantic value in the semantic environment.

i : Γ `R A (assumption)

σ : J ∆ ` Γ K (assumption)

a : J ∆ ` A K (lookup σ[i])

Case (Application). The whole point of the value model (Definition 1) is to
make this case easy to define. Evaluating the applied function (the first inductive
hypothesis) results in a metalanguage function, which we can apply to an empty
context extension (∅) and the result of evaluating the argument of the function
application (the second inductive hypothesis).

f : Γ `N A ⊃ B (assumption)

a : Γ `V A (assumption)

σ : J ∆ ` Γ K (assumption)

f ′ : J ∆ ` A ⊃ B K (i.h. evalN f σ)

f ′ : ∀∆. J Γ,∆ ` A K→ J Γ,∆ ` B K (definition)

a′ : J ∆ ` A K (i.h. evalV a σ)

b : J ∆ ` B K (f ′ ∅ a′)

Case (Primitive recursion). When canonically evaluating a neutral prim-
itive recursion (rec), we can get inductive hypotheses for all the arguments to
the primitive recursion, but we must perform a semantic version of primitive
recursion using a lemma (JrecK). The lemma JrecK was developed for evaluation

Hereditary Substitution by Canonical Evaluation 15

in NbE, and is given in Appendix A as Lemma 2.

cz : Γ `V C (assumption)

cs : Γ `V C ⊃ C (assumption)

n : Γ `N N (assumption)

σ : J ∆ ` Γ K (assumption)

c′z : J ∆ ` C K (i.h. evalV cz σ)

c′s : J ∆ ` C ⊃ C K (i.h. evalV cs σ)

n′ : J ∆ ` N K (i.h. evalN n σ)

c : J ∆ ` C K (JrecK c′z c
′
s n

′)

ut

4 Environment Reflection

Environment reflection takes a context (∆) and a syntactic environment (∆ `V

Γ), and produces a semantic environment (J ∆ ` Γ K). Recall that a syntactic
environment (Definition 3 in Section 2) is a tuple of syntactic values, all scoped
under the same context. In contrast, a semantic environment (Definition 2 in
Section 2) is a tuple of semantic values, all scoped under the same context.

Theorem 4 (Environment Reflection).

reflectS : ∀∆. ∆ `V Γ → J ∆ ` Γ K

Section 3 Theorem 3 evalV Γ `V A→ J ∆ ` Γ K→ J ∆ ` A K

Appendix C Theorem 7 reflectC ∀Γ. J Γ ` Γ K

Environment reflection is a context-preserving mapping from syntactic envi-
ronments to semantic environments. So how do we translate a single syntactic
value (∆ `V A) in the syntactic environment (∆ `V Γ) to a semantic value
(J ∆ ` A K) in the same context? We canonically evaluate it, but what should
the semantic environment for canonical evaluation be? Because we do not want
the context to change in the result of canonical evaluation, we can pass it the
identity semantic environment (J ∆ ` ∆ K) via context reflection (Theorem 7 in
Appendix C).

Proof. By induction on the environment ∆ `V Γ .

Case (Empty environment). The empty environment case is trivial.

∆ (assumption)

u : > (assumption)

u : J ∆ ` Γ K (definition)

16 Larry Diehl and Tim Sheard

Case (Environment extension). To reflect a syntactic environment (σ) ex-
tended by a syntactic value (x), we must produce a semantic environment ex-
tended by a semantic value. The induction hypothesis gives us the semantic
environment.

To get the semantic value we must canonically evaluate the syntactic value
argument (x). The second parameter of canonical evaluation is an environment,
which determines the context that the resulting semantic value is scoped under.
Because our syntactic value x already has the correct scope (∆), we can use
context reflection (of ∆) as the semantic environment argument for canonical
evaluation.

∆ (assumption)

σ : ∆ `V Γ (assumption)

x : ∆ `V A (assumption)

σ′ : J ∆ ` Γ K (i.h. reflectS ∆ σ)

δ : J ∆ ` ∆ K (reflectC ∆)

x′ : J ∆ ` A K (evalV x δ)

σ′′ : J ∆ ` Γ,A K (σ′, x′)

ut

4.1 No Circularity

If you look back at the definition of SbE (Theorem 2 in Section 2), it might now
seem circular. SbE is defined by canonically evaluating a syntactic value, but
canonical evaluation also takes a semantic environment. So before canonically
evaluating the syntactic value, we must reflect the syntactic environment to
a semantic environment. However, environment reflection (Theorem 4) is once
again defined by canonical evaluation, which needs a semantic environment for
each syntactic value in the reflected syntactic environment.

Fortunately, the circularity is broken because we can always produce an iden-
tity semantic environment (mapping variables to themselves as semantic values)
out of thin air using context reflection (Theorem 7 in Appendix C).

5 Related & Future Work

Below we compare and contrast model-theoretic hereditary substitution (SbE)
with conventional proof-theoretic hereditary substitution. In particular, we point
out that the model-theoretic version scales to calculi with inductive types. We
also discuss some future work, namely scaling SbE to calculi with features like
delimited control, and proving correctness of SbE.

Hereditary Substitution by Canonical Evaluation 17

5.1 Proof-Theoretic Hereditary Substitution

Techniques similar to hereditary substitution originated in the world of proof
theory. For example, Prawitz [24] proved that normalization of natural deduc-
tion terminates via a lexicographic ordering on proposition (types) and proofs
(terms). This syntactic proof is similar to a definition of hereditary substitu-
tion. Joachimski et al. [13] showed that normalization of various expression-
based λ-calculi (even Gödel’s System T) terminates using a syntactic argument
also resembling hereditary substitution. Watkins [26] explicitly defined heredi-
tary substitution by proving termination of a semantics for a concurrent logical
framework.

There has also been work on formalizing the syntactic termination argument
of hereditary substitution in type theory. This is done by defining hereditary
substitution as a total function with an implicit termination proof that relies
on the lexicographic termination argument on types and terms. For example,
Keller and Altenkirch [14] define hereditary substitution this way within Agda
for the Simply Typed Lambda Calculus (STLC). Similarly, Abel [1] defines si-
multaneous hereditary substitution for STLC in Agda. However, extending for-
mal, syntactic, and implicit termination arguments of hereditary substitution to
richer calculi has been more difficult. For example, Eades [9] discusses the dif-
ficulties with extending proof-theoretic hereditary substitution to richer calculi.
In particular, the termination argument becomes troublesome in calculi with
inductive types. Eades [10] has overcome the problems for predicative System F
and STLC with sum types. However, formal and implicit termination arguments
of hereditary substitution for calculi with recursive sum types, such as natural
numbers (Gödel’s System T) or parametric lists, remain to be discovered.

5.2 Model-Theoretic Hereditary Substitution

SbE is a model-theoretic definition of hereditary substitution. It is derived from
NbE by adapting evaluation to work on canonical terms, rather than expressions.
Because SbE reuses so much from NbE, it also enjoys many of its benefits. For
example, NbE can be used to define normalization of STLC within type theory
as a function with an implicit termination proof. Coquand [6] first formalized
NbE for STLC in Alf [16]. It is also easy to formalize NbE for STLC in Agda,
as demonstrated by Morrison [20] and Ilik [12].

Significantly, type theoretic formalizations of NbE have been easy to extend
to more complex calculi, such as calculi with inductive types. Ilik [12] shows
how to formalize NbE in Agda for a λ-calculus with sums, polymorphic lists,
and even delimited control.

Because SbE is an adaption of NbE to canonical terms, it is easy to adapt
formalizations of NbE for complex calculi to SbE. For example, our accompa-
nying code implements SbE for a calculus with polymorphic lists and folds over
them. It should be just as easy to adapt Ilik’s NbE formalization of delimited
control to SbE.

18 Larry Diehl and Tim Sheard

5.3 Correctness

Because NbE allows you to write normalization as a function within type theory,
you may be content with this normalization function acting as both the specifi-
cation and the implementation of the semantics for your calculus. Otherwise, you
may wish to prove that normalization is both sound and complete with respect
to a relationally specified equivalence relation on expressions.

Similarly, you may accept normalization defined in terms of SbE (nbs in Ap-
pendix D) as the specification and implementation of a semantics for expressions.
If you do not accept this, then you may wish to prove the following correctness
theorem.

nbs e1 ≡ nbs e2 ↔ e1 ≈β e2

The theorem requires normalization by hereditary substitution (nbs) to be
sound (the “if” direction) and complete (the “only if” direction) with respect
to a relational specified β-equivalence relation. Note that because we are using
De Bruijn variables, the left-hand side only requires strict equality between the
values produced from normalizing the input expressions.

We have not yet proven the theorem above for SbE, but because so much
of SbE is derived from NbE, we expect proving this theorem to borrow proof
machinery from the NbE world. We expect the completeness direction to be
proven using a logical relation, similar to the proof that Abel [2] gives for NbE
completeness. We expect the soundness direction of SbE to be provable directly,
like the soundness direction of NbE also mentioned by Abel [2]. We expect the
soundness proof to require several “commutation lemmas”, as described by Keller
and Altenkirch [14], and as used in their correctness proof of syntactic hereditary
substitution. The commutation lemmas ensure that hereditary substitution into
values commutes with ordinary substitution into expressions.

6 Conclusion

Normalization by Evaluation (NbE) makes it possible to formalize an intrinsic
termination argument of the normalization of expressions for many λ-calculi (e.g.
calculi with polymorphic lists, sums, continuations, etc).

If you adapt the evaluation part of NbE from expressions to canonical terms,
you get a function with an intrinsic termination proof that maps a syntactic
value and a semantic environment to a semantic value. We call this function
canonical evaluation. By beautiful coincidence, canonical evaluation is semantic
hereditary substitution. In other words, it is the lifting of syntactic hereditary
substitution to semantic values of a Kripke model.

After noticing that canonical evaluation is semantic hereditary substitution,
we showed how to define syntactic hereditary substitution by reflecting its envi-
ronment argument and reifying the result of canonical evaluation. We call this
technique Hereditary Substitution by Canonical Evaluation (SbE). When defin-
ing SbE, we get to reuse many definitions, theorems, and lemmas from NbE,

Hereditary Substitution by Canonical Evaluation 19

such as the model and reification. Finally, hereditary substitution for complex
λ-calculi can be formalized within dependently typed languages as a function
with an intrinsic termination proof!

Acknowledgments. We would like to thank Andrew Cave for helping us under-
stand subtle issues related to context weakening when formalizing termination
proofs via realizability predicates. We would also like to thank Darin Morrison
for originally introducing us to the connection between NbE and a Kripke model
for intuitionistic logic. Finally, we would like to thank Clarissa Littler and Ki
Yung Ahn for giving valuable feedback on drafts of this paper. This work was
supported by NSF/CISE/CCF grant #1320934.

References

1. Abel, A.: Implementing a normalizer using sized heterogeneous types. Journal of
Functional Programming 19(3-4), 287–310 (2009)

2. Abel, A.: Normalization by Evaluation: Dependent Types and Impredicativity.
Habilitation Thesis (May 2013)

3. Abel, A., Chapman, J.: Normalization by evaluation in the delay monad: A case
study for coinduction via copatterns and sized types. In: Levy, P., Krishnaswami,
N. (eds.) Proceedings 5th Workshop on Mathematically Structured Functional Pro-
gramming, Grenoble, France, 12 April 2014. Electronic Proceedings in Theoretical
Computer Science, vol. 153, pp. 51–67. Open Publishing Association (2014)

4. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
λ-calculus. In: Logic in Computer Science, 1991. LICS’91., Proceedings of Sixth
Annual IEEE Symposium on. pp. 203–211. IEEE (1991)

5. Brady, E.C.: Idris — systems programming meets full dependent types. In: Pro-
ceedings of the 5th ACM workshop on Programming languages meets program
verification. pp. 43–54. ACM (2011)

6. Coquand, C.: A formalised proof of the soundness and completeness of a sim-
ply typed lambda-calculus with explicit substitutions. Higher-Order and Symbolic
Computation 15(1), 57–90 (2002)

7. Danvy, O.: Type-directed partial evaluation. Springer (1999)
8. De Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the church-rosser theorem.
In: Indagationes Mathematicae (Proceedings). vol. 75, pp. 381–392. Elsevier (1972)

9. Eades, H., Stump, A.: Exploring the reach of hereditary substitution http:

//metatheorem.org/wp-content/papers/cr_TYPES11_pro_submission.pdf

10. Eades, H., Stump, A.: Hereditary substitution for stratified system f. In: Interna-
tional Workshop on Proof-Search in Type Theories, PSTT. vol. 10 (2010)

11. Gödel, V.K.: Über eine bisher noch nicht benützte erweiterung des finiten stand-
punktes. dialectica 12(3-4), 280–287 (1958)

12. Ilik, D.: Normalization of gödel’s system t extended with control delimited at the
type of natural numbers. ppdp tutorial. (2014), http://www.lix.polytechnique.
fr/~danko/PPDP-2014-tutorial/

13. Joachimski, F., Matthes, R.: Short proofs of normalization for the simply-typed
λ-calculus, permutative conversions and gödel’s t. Archive for Mathematical Logic
42(1), 59–87 (2003)

20 Larry Diehl and Tim Sheard

14. Keller, C., Altenkirch, T.: Hereditary substitutions for simple types, formalized. In:
Proceedings of the third ACM SIGPLAN workshop on Mathematically structured
functional programming. pp. 3–10. ACM (2010)

15. Kripke, S.A.: Semantical analysis of intuitionistic logic i. Studies in logic and the
foundations of mathematics 40, 92–130 (1965)

16. Magnusson, L.: The implementation of alf-a proof editor based on martin-löf’s
monomorphic type theory with explicit substitution (1995)

17. Martin-Löf, P.: Intuitionistic type theory. Notes by Giovanni Sambin (1984)
18. Martin-Löf, P.: An intuitionistic theory of types: Predicative part. Studies in Logic

and the Foundations of Mathematics 80, 73–118 (1975)
19. Mitchell, J.C., Moggi, E.: Kripke-style models for typed lambda calculus. Annals

of Pure and Applied Logic 51(1), 99–124 (1991)
20. Morrison, D.: Normalization by evaluation in agda. source code. (2009), https:

//github.com/darinmorrison/nbe

21. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s type
theory, vol. 85. Oxford University Press (1990)

22. Norell, U.: Towards a practical programming language based on dependent type
theory. Chalmers University of Technology (2007)

23. Plotkin, G.D.: Lambda-definability and logical relations. School of Artificial Intel-
ligence, University of Edinburgh (1973)

24. Prawitz, D., Deduction, N.: A proof theoretical study’. Almqvist˜ Wiksell, Stock-
holm (1965)

25. The Coq Development Team: The Coq Proof Assistant Reference Manual (2008),
http://coq.inria.fr

26. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work: The propositional fragment. In: Types for Proofs and Programs, pp. 355–377.
Springer (2004)

Hereditary Substitution by Canonical Evaluation 21

Appendix

A Evaluation

Evaluation of expressions in NbE is like canonical evaluation of values in SbE.
The proof of evaluation below does not describe how each case works, because
it is essentially the same as canonical evaluation (Theorem 3 and Lemma 1
in Section 3). We invite the reader to compare the proofs of evaluation and
canonical evaluation to verify their similarity. Whereas canonical evaluation is
defined separately for neutrals, evaluation is a single definition for all syntactic
forms.

Theorem 5 (Evaluation).

evalE : Γ `E A→ J ∆ ` Γ K→ J ∆ ` A K

Appendix C Lemma 4 monoS ∀∆. J Ξ ` Γ K→ J Ξ,∆ ` Γ K

Appendix A Lemma 2 JrecK J Γ ` C K→ J Γ ` C ⊃ C K→ J Γ ` N K→ J Γ ` C K

Evaluation (evalE) is a type-preserving translation. It takes a syntactic ex-
pression in some initial context (Γ `E A) and a semantic environment in some
terminal context (J ∆ ` Γ K), and produces a semantic value in the terminal
context (J ∆ ` A K). The semantic environment has a semantic value for every
type in the initial context, each of which must be scoped in the terminal context.

Proof. By induction on the expression Γ `E A.

Case (Zero).

n : ∆ `E N (zero)

n : J ∆ ` N K (definition)

Case (Successor).

n : Γ `E N (assumption)

σ : J ∆ ` Γ K (assumption)

n′ : J ∆ ` N K (i.h. evalE n σ)

n′ : ∆ `E N (definition)

m : ∆ `E N (suc n′)

m : J ∆ ` N K (definition)

22 Larry Diehl and Tim Sheard

Case (Function).

b : Γ,A `E B (assumption)

σ : J ∆ ` Γ K (assumption)

Ξ (assumption)

a : J∆,Ξ ` AK (assumption)

σ′ : J ∆,Ξ ` Γ K (monoS Ξ σ)

b′ : J ∆ ` B K (i.h. evalE b (σ′, a))

Case (Variable).

i : Γ `R A (assumption)

σ : J ∆ ` Γ K (assumption)

a : J ∆ ` A K (lookup σ[i])

Case (Application).

f : Γ `E A ⊃ B (assumption)

a : Γ `E A (assumption)

σ : J ∆ ` Γ K (assumption)

f ′ : J ∆ ` A ⊃ B K (i.h. evalE f σ)

f ′ : ∀∆. J Γ,∆ ` A K→ J Γ,∆ ` B K (definition)

a′ : J ∆ ` A K (i.h. evalE a σ)

b : J ∆ ` B K (f ′ ∅ a′)

Case (Primitive recursion).

cz : Γ `E C (assumption)

cs : Γ `E C ⊃ C (assumption)

n : Γ `E N (assumption)

σ : J ∆ ` Γ K (assumption)

c′z : J ∆ ` C K (i.h. evalE cz σ)

c′s : J ∆ ` C ⊃ C K (i.h. evalE cs σ)

n′ : J ∆ ` N K (i.h. evalE n σ)

c : J ∆ ` C K (JrecK c′z c
′
s n

′)

ut

Lemma 2 (Semantic Primitive Recursion).

JrecK : J Γ ` C K→ J Γ ` C ⊃ C K→ J Γ ` N K→ J Γ ` C K

Hereditary Substitution by Canonical Evaluation 23

Appendix B Theorem 6 reify J Γ ` A K→ Γ `V A

Appendix B Lemma 3 reflectN Γ `N A→ J Γ ` A K

Semantic primitive recursion (JrecK) is the lifting of the syntax of primitive
recursion (rec) to the model (the semantic domain). It takes a semantic value
for zero branch, a semantic value for the successor case, and a semantic value
for the natural number to recurse over.

Because the model of natural numbers is just a natural number value, the
model of primitive recursion works basically the same way that normalization
of primitive recursion would work in the theory. The main difference is that the
arguments and return type are really elements of the model. In particular, the
successor branch for the primitive recursion is a model function that we may
simply apply to other model values (i.e. the induction hypothesis).

Proof. By induction on the semantic natural number value J Γ ` N K. Definition-
ally, this reduces to induction on the syntactic natural number value Γ `V N.

Case (Zero). The zero case is immediate.

cz : J Γ ` C K (assumption)

Case (Successor). In the successor case we first get the inductive hypothesis
for the predecessor. Because the successor branch argument is a semantic value
of function type, it is a metalanguage function. Thus, we compute the result
by applying the successor branch to the empty context (weakening by nothing),
and the inductive hypothesis.

cz : J Γ ` C K (assumption)

cs : J Γ ` C ⊃ C K (assumption)

n : Γ `V N (assumption)

n : J Γ ` N K (definition)

c : J Γ ` C K (i.h. JrecK cz cs n)

cs : ∀∆. J Γ,∆ ` C K→ J Γ,∆ ` C K (definition)

c′ : J Γ ` C K (cs ∅ c)

Case (Neutral). If the value that we are trying to recurse over is neutral,
then we reflect a syntactic primitive recursion stuck on the neutral input, while

24 Larry Diehl and Tim Sheard

reifying both branch arguments.

cz : J Γ ` C K (assumption)

cs : J Γ ` C ⊃ C K (assumption)

n : Γ `N N (assumption)

c′z : Γ `V C (reify cz)

c′s : Γ `V C ⊃ C (reify cs)

c′ : Γ `N C (rec c′z c
′
s n)

c′′ : J Γ ` C K (reflect c′)

ut

B Reification

Reification (Theorem 6) is the process of turning a semantic value into a syntactic
value. It is defined mutually with the reflection (Lemma 3) of neutrals to semantic
values.

Theorem 6 (Reification).

reify : J Γ ` A K→ Γ `V A

Appendix B Lemma 3 reflectN Γ `N A→ J Γ ` A K

Reification maps any semantic value (J Γ ` A K) to a syntactic value (Γ `V

A). It is mutually defined with the reflection of syntactic neutrals to semantic
values (reflectN), making it possible to reify functions.

Proof. By induction on the type A.

Case (Natural numbers). Semantic natural numbers values are also syntac-
tic values, so their reification is immediate.

n : J Γ ` N K (assumption)

n : Γ `V N (definition)

Case (Functions). When reifying a function (of type A ⊃ B) we get a met-
alanguage function as a parameter. The function parameters are a context to
weaken by and a weakened semantic value (of type A).

We would like to call the function, but we cannot a produce a semantic value
of type J Γ ` A K out of thin air. What if we make the weakening parameter of
the metalanguage function be the singleton context ∅, A? Now we can call the
function by making the (now weakened) parameter J Γ,A ` A K be a variable!
However, the variable must be a semantic value. Luckily, the mutually defined

Hereditary Substitution by Canonical Evaluation 25

lemma reflectN can translate any syntactic neutral term (including variables) to
a semantic value.

Finally, we reify the result of the metalanguage function and wrap it in a λ.
Note that in this appeal to the inductive hypothesis the type gets smaller (B is
smaller A ⊃ B). When reflecting the variable after weakening, the type also gets
smaller (B is smaller A ⊃ B).

f : J Γ ` A ⊃ B K (assumption)

f : ∀∆. J Γ,∆ ` A K→ J Γ,∆ ` B K (definition)

a : J Γ,A ` A K (i.h. reflectN (var here))

b : J Γ,A ` B K (f (∅, A) a)

b′ : Γ,A `V B (i.h. reify b)

f ′ : Γ `V A ⊃ B (λb′)

ut

Lemma 3 (Neutral Reflection).

reflectN : Γ `N A→ J Γ ` A K

Appendix B Theorem 6 reify J Γ ` A K→ Γ `V A

The reflection of neutrals maps any syntactic neutral (Γ `N A) to a semantic
value (J Γ ` A K). Note that we can only reflect syntactic neutrals, not syntactic
values! If we could reflect syntactic values, then this would be like canonical
evaluation of values without the semantic environment argument. However, the
semantic environment allows the semantic values to be collected when canoni-
cally evaluating underneath a function body.

Proof. By induction on the type A.

Case (Natural numbers). The natural number case is immediate.

n : Γ `N N (assumption)

n′ : Γ `V N (neut n)

n′ : J Γ ` N K (definition)

Case (Functions). To reflect a neutral function, we get a syntactic neutral
function f as a standard argument. Because we are producing a metalanguage
function, we also get ∆ and a as additional arguments. Reifying a changes it
from a semantic value to a syntactic value. Now, we can appeal to the inductive
hypothesis to reflect the application of a weakened version of f to the reified
a. The reason why reflection of the function case is okay for neutrals, but not
values, is because application of a syntactic neutral function to a syntactic value

26 Larry Diehl and Tim Sheard

argument produces a syntactic neutral result. Finally, note that the appeal to
the inductive hypothesis is decreasing on the size of the type (where B is smaller
than A ⊃ B), not the size of the term.

f : Γ `N A ⊃ B (assumption)

∆ (assumption)

a : J Γ,∆ ` A K (assumption)

a′ : Γ,∆ `V A (i.h. reify a)

f ′ : Γ,∆ `N A ⊃ B (weakening)

b : J Γ,∆ ` B K (i.h. reflectN (f ′ · a′))

ut

C Context Reflection

Context reflection (Theorem 7) gives a semantic meaning to a context by trans-
lating it to a semantic environment. Specifically, context reflection produces the
identity semantic environment, mapping variables to themselves as semantic val-
ues. Context reflection makes use of environment monotonicity (Lemma 4), and
environment monotonicity makes use of value monotonicity (Lemma 5). Both
monotonicity lemmas are basically a version of weakening lifted from syntax to
semantics, for environments and values respectively.

Theorem 7 (Context Reflection).

reflectC : ∀Γ. J Γ ` Γ K

Appendix B Lemma 3 reflectN Γ `N A→ J Γ ` A K

Appendix C Lemma 4 monoS ∀∆. J Ξ ` Γ K→ J Ξ,∆ ` Γ K

Context reflection takes a new context (Γ), and produces a semantic envi-
ronment (J Γ ` Γ K). At a high level, context reflection produces the semantic
identity environment by reflecting each variable in the context.

Proof. By induction on the context Γ .

Case (Empty context). The empty context case is trivial.

u : > (trivial)

u : J ∅ ` ∅ K (definition)

Case (Context extension). To produce a semantic identity environment for
a context extension, we must extend the inductive hypothesis with the reflection
of the variable representing the type (A) extending the context. However, the

Hereditary Substitution by Canonical Evaluation 27

scope (Γ,A) of the variable includes the type of the context extension (A). Thus,
the semantic environment produced by the inductive hypothesis must first be
weakened, using environment monotonicity (monoS), before it is extended with
the reflected variable.

Γ (assumption)

A (assumption)

σ : J Γ ` Γ K (i.h. reflectC Γ)

σ′ : J Γ,A ` Γ K (monoS (∅, A) σ)

x : J Γ,A ` A K (reflectN (var here))

σ′′ : J Γ,A ` Γ,A K (σ′, x)

ut

Lemma 4 (Environment Monotonicity).

monoS : ∀∆. J Ξ ` Γ K→ J Ξ,∆ ` Γ K

Appendix C Lemma 5 monoV ∀∆. J Γ ` A K→ J Γ,∆ ` A K

Environment monotonicity takes a context (∆), and a semantic environment
scoped under some existing context (Ξ), and returns a semantic environment
scoped under the weakening of the existing context (∆,Ξ).

Because a semantic environment is basically a tuple of semantic values, envi-
ronment monotonicity is defined by mapping value monotonicity (monoV) across
the tuple.

Proof. By induction on the context Γ .

Case (Empty context). The empty context case is trivial.

∆ (assumption)

u : > (assumption)

u : J Ξ,∆ ` ∅ K (definition)

Case (Context extension). To weaken the context extension of a semantic
environment, extend the inductive hypothesis with the weakening of the semantic
value extending the context by using monoV.

∆ (assumption)

σ : J Ξ ` Γ K (assumption)

x : J Ξ ` A K (assumption)

σ′ : J Ξ,∆ ` Γ K (i.h. monoS ∆ σ)

x′ : J Ξ,∆ ` A K (monoV ∆ x)

σ′′ : J Ξ,∆ ` Γ,A K (σ′, x′)

28 Larry Diehl and Tim Sheard

ut

Lemma 5 (Value Monotonicity).

monoV : ∀∆. J Γ ` A K→ J Γ,∆ ` A K

Value monotonicity takes a new context (∆), and a semantic value scoped
under some existing context (Γ), and returns a semantic value scoped under the
weakening of the existing context (Γ,∆).

Proof. By case analysis of the type A.

Case (Natural numbers). Because semantic natural numbers are syntactic
natural numbers, the natural number case can be defined via syntactic weaken-
ing.

∆ (assumption)

n : J Γ ` N K (assumption)

n : Γ `V N (definition)

n′ : Γ,∆ `V N (weakening)

n′ : J Γ,∆ ` N K (definition)

Case (Functions). In the function case, we get the context ∆ and the se-
mantic function f as standard arguments. Additionally, we get a context Ξ and
an argument a as arguments because we are returning a semantic function. We
compute the required result by applying the semantic function f to the weak-
ening (∆,Ξ) and the semantic argument a. However, a and the result must be
suitably altered using syntactic associativity of context concatenation.

∆ (assumption)

f : J Γ ` A ⊃ B K (assumption)

Ξ (assumption)

a : J(Γ,∆), Ξ ` AK (assumption)

a′ : JΓ, (∆,Ξ) ` AK (associativity)

f : ∀Φ. J Γ,Φ ` A K→ J Γ,Φ ` B K (definition)

b : JΓ, (∆,Ξ) ` BK (f (∆,Ξ) a′)

b′ : J(Γ,∆), Ξ ` BK (associativity)

ut

D Normalization by Hereditary Substitution

Normalization by hereditary substitution (Theorem 8) defines normalization in
terms of hereditary substitution in the function application and primitive re-
cursion cases. Application by hereditary substitution (Lemma 6) is used in the

Hereditary Substitution by Canonical Evaluation 29

application case of normalization, and primitive recursion by hereditary sub-
stitution (Lemma 7) is used in the primitive recursion case of normalization.
Primitive recursion by hereditary substitution also uses application by heredi-
tary substitution in its successor case.

Theorem 8 (Normalization by Hereditary Substitution).

nbs : Γ `E A→ Γ `V A

Appendix D Lemma 6 abs Γ `V A ⊃ B → Γ `V A→ Γ `V B

Appendix D Lemma 7 rbs Γ `V C → Γ `V C ⊃ C → Γ `V N→ Γ `V C

Normalization by hereditary substitution takes a syntactic expression of some
context (Γ) and some type (A), and returns a syntactic value of the same context
and type.

Proof. By induction on the expression Γ `E A.

nbs zero 7→ zero

nbs (suc n) 7→ suc (nbs n)

nbs (λb) 7→ λ(nbs b)

nbs (var i) 7→ neut (var i)

nbs (f · a) 7→ abs (nbs f) (nbs a)

nbs (rec cz cs n) 7→ rbs (nbs cz) (nbs cs) (nbs n)

All cases except for the eliminations translate expressions to values imme-
diately or via congruences. The application and primitive recursion cases are
handled by lemmas that work on values (abs and rbs respectively).

ut

Lemma 6 (Application by Hereditary Substitution).

abs : Γ `V A ⊃ B → Γ `V A→ Γ `V B

Section 2 Theorem 2 sbe Γ `V A→ ∆ `V Γ → ∆ `V A

Application by Hereditary Substitution takes a syntactic function value (of
type A ⊃ B) and a syntactic value for the domain of the function (of type A),
and returns a syntactic value for the codomain of the function (of type B).

Proof. By induction on the function value Γ `V A ⊃ B.

abs (λb) a 7→ sbe b (σid, a)

abs (neut f) a 7→ neut (f · a)

30 Larry Diehl and Tim Sheard

The neutral case is a congruence, and the function case is defined by heredi-
tary substitution of the argument into the function body. Specifically, the sbe is
called by extending the identity syntactic environment σid with the argument a.

ut

Lemma 7 (Primitive Recursion by Hereditary Substitution).

rbs : Γ `V C → Γ `V C ⊃ C → Γ `V N→ Γ `V C

Appendix D Lemma 6 abs Γ `V A ⊃ B → Γ `V A→ Γ `V B

Primitive Recursion by Hereditary Substitution recurses over a syntactic nat-
ural number value (Γ `V N) with two syntactic branch values (Γ `V C and
Γ `V C ⊃ C), and returns a syntactic value (Γ `V C).

Proof. By induction on the natural number value Γ `V N.

rbs cz cs zero 7→ cz

rbs cz cs (suc n) 7→ abs cs (rbs cz cs n)

rbs cz cs (neut n) 7→ neut (rec cz cs n)

The zero case is immediate and the neutral case is a congruence. The suc-
cessor case applies the successor branch to the inductive hypothesis using abs
(Lemma 6).

ut

